Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 19(9): 954-962, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30127438

RESUMEN

Controlling the balance between immunity and immunopathology is crucial for host resistance to pathogens. After infection, activation of the hypothalamic-pituitary-adrenal (HPA) axis leads to the production of glucocorticoids. However, the pleiotropic effects of these steroid hormones make it difficult to delineate their precise role(s) in vivo. Here we found that the regulation of natural killer (NK) cell function by the glucocorticoid receptor (GR) was required for host survival after infection with mouse cytomegalovirus (MCMV). Mechanistically, endogenous glucocorticoids produced shortly after infection induced selective and tissue-specific expression of the checkpoint receptor PD-1 on NK cells. This glucocorticoid-PD-1 pathway limited production of the cytokine IFN-γ by spleen NK cells, which prevented immunopathology. Notably, this regulation did not compromise viral clearance. Thus, the fine tuning of NK cell functions by the HPA axis preserved tissue integrity without impairing pathogen elimination, which reveals a novel aspect of neuroimmune regulation.


Asunto(s)
Glucocorticoides/metabolismo , Infecciones por Herpesviridae/inmunología , Células Asesinas Naturales/fisiología , Muromegalovirus/fisiología , Receptor de Muerte Celular Programada 1/metabolismo , Receptores de Glucocorticoides/metabolismo , Animales , Células Cultivadas , Femenino , Sistema Hipotálamo-Hipofisario , Inmunidad Innata , Interferón gamma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroinmunomodulación , Especificidad de Órganos , Sistema Hipófiso-Suprarrenal , Receptores de Glucocorticoides/genética , Transducción de Señal , Carga Viral
2.
Immunity ; 46(3): 340-342, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28329698

RESUMEN

Brain ischemia induces profound systemic immunosuppression, leading to infectious complications. In this issue of Immunity, Liu et al. (2017) demonstrate that distinct neuroendocrine pathways differentially inhibit natural killer (NK) cell responses in the central nervous system and the periphery after cerebral infarction.


Asunto(s)
Encéfalo , Células Asesinas Naturales/inmunología , Humanos
3.
Semin Immunol ; 61-64: 101660, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36370672

RESUMEN

Monoclonal antibodies that target specific ligand-receptor signaling pathways and act as immune checkpoint inhibitors have been designed to remove the brakes in T cells and restore strong and long-term antitumor-immunity. Of note, many of these inhibitory receptors are also expressed by Innate Lymphoid Cells (ILCs), suggesting that also blockade of inhibitory pathways in innate lymphocytes has a role in the response to the treatment with checkpoint inhibitors. ILCs comprise cytotoxic NK cells and "helper" subsets and are important cellular components in the tumor microenvironment. In addition to killing tumor cells, ILCs release inflammatory cytokines, thus contributing to shape adaptive cell activation in the context of immunotherapy. Therefore, ILCs play both a direct and indirect role in the response to checkpoint blockade. Understanding the impact of ILC-mediated response on the treatment outcome would contribute to enhance immunotherapy efficacy, as still numerous patients resist or relapse.


Asunto(s)
Inmunidad Innata , Neoplasias , Humanos , Inmunoterapia , Células Asesinas Naturales , Citocinas/metabolismo , Microambiente Tumoral
4.
Cytometry A ; 103(5): 378-382, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36708139

RESUMEN

Innate lymphoid cells (ILCs) comprise cytotoxic NK cells and helper-ILCs, which are further divided in ILC1, ILC2, and ILC3. Helper-ILCs mirror the effector functions of helper T-cell subsets and contribute to host immune defense, tissue homeostasis and repair through cytokine secretion. Although they are mainly tissue-resident, helper ILCs are also found in the peripheral blood (PB). In the human setting, it may be needed to analyze circulating helper ILCs to compare pathological to physiological conditions. In this review, we provide simple guidelines and a list of markers useful to study human PB helper ILCs phenotype and function by flow cytometry.


Asunto(s)
Inmunidad Innata , Linfocitos , Humanos , Citometría de Flujo , Células Asesinas Naturales
5.
Trends Immunol ; 41(5): 364-366, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32307240

RESUMEN

Cyclically, during the day, increased permeability of the intestinal epithelial barrier, allowing nutrient uptake, must be compensated for, to achieve increased protection against potentially harmful components. Seillet et al. demonstrate that, upon food intake, enteric neuron-derived VIP promotes anticipatory mucosal immunity by inducing ILC3s to produce protective IL-22.


Asunto(s)
Microbioma Gastrointestinal , Neuropéptidos , Humanos , Inmunidad Mucosa , Mucosa Intestinal , Permeabilidad
6.
J Allergy Clin Immunol ; 149(5): 1772-1785, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34688777

RESUMEN

BACKGROUND: Innate lymphoid cells (ILCs) comprise cytotoxic natural killer (NK) cells and helper ILCs (hILCs). Human hILC development is less characterized as compared with that of NK cells, although all ILCs are developmentally related. It has been reported that the immunosuppressive drugs glucocorticoids (GCs) regulate ILC function, but whether they control ILC differentiation from hematopoietic stem cells (HSCs) is unknown. OBJECTIVES: This study sought to analyze the effect of GCs on ILC development from HSCs. METHODS: This study exploited an in vitro system to generate and expand from peripheral blood HSCs a multipotent CD56+ ILC precursor able to differentiate into NK cells, ILC1s, and ILC3s. We also analyzed ex vivo, at different time points, the peripheral blood of recipients of allogeneic HSC transplantation who were or were not treated with GCs and compared ILC subset reconstitution. RESULTS: Invitro, GCs favor the generation of NK cells from myeloid precursors, while they strongly impair lymphoid development. In support of these data, recipients of HSC transplantation who had been treated with GCs display a lower number of circulating hILCs, including the ILC precursor (ILCP) previously identified as a systemic substrate for tissue ILC differentiation. CONCLUSIONS: GCs impair the development of the CD117+ ILCP from CD34+ HSCs, while they do not affect the further steps of ILCP differentiation toward NK cells and hILC subsets. This reflects an association of GC treatment with a marked reduction of circulating hILCs in the recipients of HSC transplantation.


Asunto(s)
Glucocorticoides , Inmunidad Innata , Antígenos CD34 , Diferenciación Celular , Glucocorticoides/farmacología , Células Madre Hematopoyéticas , Humanos , Células Asesinas Naturales , Linfocitos
7.
Eur J Immunol ; 51(7): 1566-1579, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33899224

RESUMEN

NK cells are cytotoxic components of innate lymphoid cells (ILC) that provide a first line of defense against viral infections and contribute to control tumor growth and metastasis. Their function is finely regulated by an array of HLA-specific and non-HLA-specific inhibitory and activating receptors which allow to discriminate between healthy and altered cells. Human NK cells gained a major attention in recent years because of the important progresses in understanding their biology and of some promising data in tumor therapy. In this review, we will outline well-established issues of human NK cells and discuss some of the open questions, debates, and recent advances regarding their origin, differentiation, and tissue distribution. Newly defined NK cell specializations, including the impact of inhibitory checkpoints on their function, their crosstalk with other cell types, and the remarkable adaptive features acquired in response to certain virus infections will also be discussed.


Asunto(s)
Células Asesinas Naturales/inmunología , Animales , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Inmunidad Innata/inmunología , Neoplasias/inmunología , Virosis/inmunología
8.
J Allergy Clin Immunol ; 147(1): 349-360, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32417134

RESUMEN

BACKGROUND: Programmed cell death protein 1 (PD-1)-immune checkpoint blockade has provided significant clinical efficacy across various types of cancer by unleashing both T and natural killer (NK) cell-mediated antitumor responses. However, resistance to immunotherapy occurs for many patients, rendering the identification of the mechanisms that control PD-1 expression extremely important to increase the response to the therapy. OBJECTIVE: We sought to identify the stimuli and the molecular mechanisms that induce the de novo PD-1 expression on human NK cells in the tumor setting. METHODS: NK cells freshly isolated from peripheral blood of healthy donors were stimulated with different combinations of molecules, and PD-1 expression was studied at the mRNA and protein levels. Moreover, ex vivo analysis of tumor microenvironment and NK cell phenotype was performed. RESULTS: Glucocorticoids are indispensable for PD-1 induction on human NK cells, in cooperation with a combination of cytokines that are abundant at the tumor site. Mechanistically, glucocorticoids together with IL-12, IL-15, and IL-18 not only upregulate PDCD1 transcription, but also activate a previously unrecognized transcriptional program leading to enhanced mRNA translation and resulting in an increased PD-1 amount in NK cells. CONCLUSIONS: These results provide evidence of a novel immune suppressive mechanism of glucocorticoids involving the transcriptional and translational control of an important immune checkpoint.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/inmunología , Glucocorticoides/inmunología , Interleucina-15/inmunología , Interleucina-18/inmunología , Interleucina-2/inmunología , Células Asesinas Naturales/inmunología , Proteínas de Neoplasias/inmunología , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Microambiente Tumoral/inmunología , Células A549 , Humanos , Células K562
9.
Immunol Rev ; 286(1): 120-136, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30294960

RESUMEN

The activities of the immune system in repairing tissue injury and combating pathogens were long thought to be independent of the nervous system. However, a major regulatory role of immunomodulatory molecules released locally or systemically by the neuroendocrine system has recently emerged. A number of observations and discoveries support indeed the notion of the nervous system as an immunoregulatory system involved in immune responses. Innate lymphoid cells (ILCs), including natural killer (NK) cells and tissue-resident ILCs, form a family of effector cells present in organs and mucosal barriers. ILCs are involved in the maintenance of tissue integrity and homeostasis. They can also secrete effector cytokines rapidly, and this ability enables them to play early roles in the immune response. ILCs are activated by multiple pathways including epithelial and myeloid cell-derived cytokines. Their functions are also regulated by mediators produced by the nervous system. In particular, the peripheral nervous system, through neurotransmitters and neuropeptides, works in parallel with the hypothalamic-pituitary-adrenal and gonadal axis to modulate inflammatory events and maintain homeostasis. We summarize here recent findings concerning the regulation of ILC activities by neuroendocrine mediators in homeostatic and inflammatory conditions.


Asunto(s)
Sistema Hipotálamo-Hipofisario/fisiología , Neurotransmisores/inmunología , Sistema Hipófiso-Suprarrenal/fisiología , Animales , Homeostasis , Humanos , Inmunidad Innata , Linfocitos , Neuroinmunomodulación , Sistemas Neurosecretores
10.
Int J Mol Sci ; 22(10)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34066087

RESUMEN

Immune evasion is a key strategy adopted by tumor cells to escape the immune system while promoting their survival and metastatic spreading. Indeed, several mechanisms have been developed by tumors to inhibit immune responses. PD-1 is a cell surface inhibitory receptor, which plays a major physiological role in the maintenance of peripheral tolerance. In pathological conditions, activation of the PD-1/PD-Ls signaling pathway may block immune cell activation, a mechanism exploited by tumor cells to evade the antitumor immune control. Targeting the PD-1/PD-L1 axis has represented a major breakthrough in cancer treatment. Indeed, the success of PD-1 blockade immunotherapies represents an unprecedented success in the treatment of different cancer types. To improve the therapeutic efficacy, a deeper understanding of the mechanisms regulating PD-1 expression and signaling in the tumor context is required. We provide an overview of the current knowledge of PD-1 expression on both tumor-infiltrating T and NK cells, summarizing the recent evidence on the stimuli regulating its expression. We also highlight perspectives and limitations of the role of PD-L1 expression as a predictive marker, discuss well-established and novel potential approaches to improve patient selection and clinical outcome and summarize current indications for anti-PD1/PD-L1 immunotherapy.


Asunto(s)
Antígeno B7-H1/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inmunoterapia/métodos , Terapia Molecular Dirigida , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Humanos , Neoplasias/fisiopatología , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Escape del Tumor
11.
Trends Immunol ; 37(11): 790-802, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27667711

RESUMEN

NKG2D is an activating receptor that can bind to a large number of stress-induced ligands that are expressed in the context of cancer or viral infection. This receptor is expressed on many cytotoxic lymphocytes, and plays a crucial role in antitumor and antiviral immune responses. However, exposure to NKG2D ligand-expressing target cells promotes receptor endocytosis, ultimately leading to lysosomal receptor degradation and impairment of NKG2D-mediated functions. Interestingly, before being degraded, internalized receptors can signal from the endosomal compartment, leading to the appropriate activation of cellular functional programs. This review summarizes recent findings on ligand-induced receptor internalization, with particular emphasis on the role of endocytosis in the control of both NKG2D-mediated intracellular signaling and receptor degradation.


Asunto(s)
Endocitosis/inmunología , Células Asesinas Naturales/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Neoplasias/inmunología , Virosis/inmunología , Animales , Regulación de la Expresión Génica , Humanos , Activación de Linfocitos , Subfamilia K de Receptores Similares a Lectina de Células NK/genética , Agregación de Receptores , Transducción de Señal/inmunología , Estrés Fisiológico
12.
Int J Mol Sci ; 18(8)2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28767057

RESUMEN

Natural-killer receptor group 2, member D (NKG2D) is a well characterized natural killer (NK) cell activating receptor that recognizes several ligands poorly expressed on healthy cells but up-regulated upon stressing stimuli in the context of cancer or viral infection. Although NKG2D ligands represent danger signals that render target cells more susceptible to NK cell lysis, accumulating evidence demonstrates that persistent exposure to ligand-expressing cells causes the decrease of NKG2D surface expression leading to a functional impairment of NKG2D-dependent NK cell functions. Upon ligand binding, NKG2D is internalized from the plasma membrane and sorted to lysosomes for degradation. However, receptor endocytosis is not only a mechanism of receptor clearance from the cell surface, but is also required for the proper activation of signalling events leading to the functional program of NK cells. This review is aimed at providing a summary of current literature relevant to the molecular mechanisms leading to NKG2D down-modulation with particular emphasis given to the role of NKG2D endocytosis in both receptor degradation and signal propagation. Examples of chronic ligand-induced down-regulation of NK cell activating receptors other than NKG2D, including natural cytotoxicity receptors (NCRs), DNAX accessory molecule-1 (DNAM1) and CD16, will be also discussed.


Asunto(s)
Endocitosis/inmunología , Células Asesinas Naturales/inmunología , Lisosomas/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Proteolisis , Transducción de Señal/inmunología , Animales , Humanos , Células Asesinas Naturales/citología
14.
Eur J Immunol ; 44(9): 2761-70, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24846123

RESUMEN

The NKG2D activating receptor on human NK cells mediates "altered self" recognition, as its ligands (NKG2DLs) are upregulated on target cells in a variety of stress conditions. Evidence collected in the past years shows that, even though expression of NKG2DLs acts as a danger signal that renders tumor cells susceptible to cytotoxicity, chronic exposure to soluble or membrane-bound NKG2DLs can lead to down-modulation of receptor expression and impairment of NKG2D-mediated cell functions. Here, we evaluated whether different cell-bound NKG2DLs, namely MICA and ULBP2, are equivalently able to induce NKG2D down-modulation on human NK cells. We found that although both ligands reduce NKG2D surface expression, MICA promotes a stronger receptor down-modulation than ULBP2, leading to a severe impairment of NKG2D-dependent NK-cell cytotoxicity. We also provide evidence that the ubiquitin pathway and c-Cbl direct MICA-induced but not ULBP2-induced NKG2D internalization and degradation, thus identifying a molecular mechanism to explain the differential effects of MICA and ULBP2 on NKG2D expression. A better understanding of the molecular mechanisms employed by the different NKG2DLs to control NKG2D surface expression could be useful for the development of anti-tumor strategies to restore a normal level of NKG2D receptors on human NK cells.


Asunto(s)
Regulación hacia Abajo/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Péptidos y Proteínas de Señalización Intercelular/inmunología , Células Asesinas Naturales/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Proteínas Proto-Oncogénicas c-cbl/inmunología , Línea Celular , Proteínas Ligadas a GPI/inmunología , Humanos , Proteolisis , Ubiquitina/inmunología
16.
Front Immunol ; 15: 1368946, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38881905

RESUMEN

Background: In early infected or severe coronavirus disease 2019 (COVID-19) patients, circulating NK cells are consistently reduced, despite being highly activated or exhausted. The aim of this paper was to establish whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (SP) may directly trigger NK cells and through which receptor(s). Methods: SP-stimulated human NK cells have been evaluated for the expression of activation markers, cytokine release, and cytotoxic activity, as well as for gene expression profiles and NF-kB phosphorylation, and they have been silenced with specific small interfering RNAs. Results: SPs from the Wuhan strain and other variants of concern (VOCs) directly bind and stimulate purified NK cells by increasing activation marker expression, cytokine release, and cytolytic activity, prevalently in the CD56brightNK cell subset. VOC-SPs differ in their ability to activate NK cells, G614, and Delta-Plus strains providing the strongest activity in the majority of donors. While VOC-SPs do not trigger ACE2, which is not expressed on NK cells, or other activating receptors, they directly and variably bind to both Toll-like receptor 2 (TLR2) and TLR4. Moreover, SP-driven NK cell functions are inhibited upon masking such receptors or silencing the relative genes. Lastly, VOC-SPs upregulate CD56dimNK cell functions in COVID-19 recovered, but not in non-infected, individuals. Conclusions: TLR2 and TLR4 are novel activating receptors for SP in NK cells, suggesting a new role of these cells in orchestrating the pathophysiology of SARS-CoV-2 infection. The pathogenic relevance of this finding is highlighted by the fact that free SP providing NK cell activation is frequently detected in a SARS-CoV-2 inflamed environment and in plasma of infected and long-COVID-19 subjects.


Asunto(s)
COVID-19 , Células Asesinas Naturales , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Receptor Toll-Like 2 , Receptor Toll-Like 4 , Humanos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , COVID-19/inmunología , COVID-19/virología , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/inmunología , Activación de Linfocitos/inmunología , Citocinas/metabolismo , Citocinas/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/inmunología
17.
Eur J Immunol ; 42(10): 2744-53, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22706924

RESUMEN

Several lines of evidence suggest that Syk controls immune receptor endocytic trafficking. However, the Syk substrates that regulate this process are not currently known. Here, we demonstrate that Syk knockdown prevents the trafficking of engaged high affinity IgE receptor (FcεRI) to a degradative compartment in mast cells. We then concentrate our attention on hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) as potential Syk substrate, since it serves as critical regulator for FcεRI entry into lysosomes. We show that Hrs undergoes antigen-dependent tyrosine phosphorylation and ubiquitination, and identify Syk as the kinase responsible for Hrs phosphorylation. Syk was also required for Hrs ubiquitination catalyzed by c-Cbl E3 ligase. Syk-dependent regulation of Hrs covalent modifications, without affecting protein stability, controlled Hrs localization. The majority of phosphorylated Hrs forms were observed only in membrane compartments, whereas ubiquitinated Hrs was predominantly cytosolic, suggesting that both modifications might impact on Hrs function. Together, these findings provide a major step forward in understanding how Syk orchestrates endocytosis of engaged immune receptors.


Asunto(s)
Endocitosis/inmunología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mastocitos/inmunología , Fosfoproteínas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Receptores de IgG/metabolismo , Animales , Línea Celular Tumoral , Membrana Celular/metabolismo , Citosol/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Endogámicos C57BL , Fosforilación , Unión Proteica , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteínas Tirosina Quinasas/genética , Ratas , Receptores de IgG/genética , Quinasa Syk , Ubiquitinación
18.
Oncoimmunology ; 12(1): 2221081, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37304055

RESUMEN

Natural Killer (NK) cells are important components of the immune system in the defense against tumor growth and metastasis. They release exosomes containing proteins and nucleic acids, including microRNAs (miRNAs). NK-derived exosomes play a role in the anti-tumor NK cell function since they are able to recognize and kill cancer cells. However, the involvement of exosomal miRNAs in the function of NK exosomes is poorly understood. In this study, we explored the miRNA content of NK exosomes by microarray as compared to their cellular counterparts. The expression of selected miRNAs and lytic potential of NK exosomes against childhood B acute lymphoblastic leukemia cells after co-cultures with pancreatic cancer cells were also evaluated. We identified a small subset of miRNAs, including miR-16-5p, miR-342-3p, miR-24-3p, miR-92a-3p and let-7b-5p that is highly expressed in NK exosomes. Moreover, we provide evidence that NK exosomes efficiently increase let-7b-5p expression in pancreatic cancer cells and induce inhibition of cell proliferation by targeting the cell cycle regulator CDK6. Let-7b-5p transfer by NK exosomes could represent a novel mechanism by which NK cells counteract tumor growth. However, both cytolytic activity and miRNA content of NK exosomes were reduced upon co-culture with pancreatic cancer cells. Alteration in the miRNA cargo of NK exosomes, together with their reduced cytotoxic activity, could represent another strategy exerted by cancer to evade the immune response. Our study provides new information on the molecular mechanisms used by NK exosomes to exert anti-tumor-activity and offers new clues to integrate cancer treatments with NK exosomes.


Asunto(s)
Exosomas , MicroARNs , Neoplasias Pancreáticas , Humanos , Niño , Exosomas/genética , MicroARNs/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Células Asesinas Naturales , Neoplasias Pancreáticas
19.
Front Immunol ; 13: 954910, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967344

RESUMEN

Different programmed cell death-ligand 1 (PD-L1) assays and scoring algorithms are being used in the evaluation of PD-L1 expression for the selection of patients for immunotherapy in specific settings of advanced urothelial carcinoma (UC). In this paper, we sought to investigate three approved assays (Ventana SP142 and SP263, and Dako 22C3) in UC with emphasis on implications for patient selection for atezolizumab/pembrolizumab as the first line of treatment. Tumors from 124 patients with invasive UC of the bladder were analyzed using tissue microarrays (TMA). Serial sections were stained with SP263 and SP142 on Ventana Benchmark Ultra and with 22C3 on Dako Autostainer Link 48. Stains were evaluated independently by two observers and scored using the combined positive score (CPS) and tumor infiltrating immune cells (IC) algorithms. Differences in proportions (DP), overall percent agreement (OPA), positive percent agreement (PPA), negative percent agreement (NPA), and Cohen κ were calculated for all comparable cases. Good overall concordance in analytic performance was observed for 22C3 and SP263 with both scoring algorithms; specifically, the highest OPA was observed between 22C3 and SP263 (89.6%) when using CPS. On the other hand, SP142 consistently showed lower positivity rates with high differences in proportions (DP) compared with 22C3 and SP263 with both CPS and IC, and with a low PPA, especially when using the CPS algorithm. In conclusion, 22C3 and SP263 assays show comparable analytical performance while SP142 shows divergent staining results, with important implications for the selection of patients for both pembrolizumab and atezolizumab.


Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Antígeno B7-H1/metabolismo , Carcinoma de Células Transicionales/tratamiento farmacológico , Carcinoma de Células Transicionales/patología , Humanos , Inmunohistoquímica , Selección de Paciente , Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/patología
20.
Cell Mol Immunol ; 18(2): 269-278, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32868909

RESUMEN

Glucocorticoids (GCs) are endogenous hormones that are crucial for the homeostasis of the organism and adaptation to the external environment. Because of their anti-inflammatory effects, synthetic GCs are also extensively used in clinical practice. However, almost all cells in the body are sensitive to GC regulation. As a result, these mediators have pleiotropic effects, which may be undesirable or detrimental to human health. Here, we summarize the recent findings that contribute to deciphering the molecular mechanisms downstream of glucocorticoid receptor activation. We also discuss the complex role of GCs in infectious diseases such as sepsis and COVID-19, in which the balance between pathogen elimination and protection against excessive inflammation and immunopathology needs to be tightly regulated. An understanding of the cell type- and context-specific actions of GCs from the molecular to the organismal level would help to optimize their therapeutic use.


Asunto(s)
Glucocorticoides/farmacología , Especificidad de Órganos/efectos de los fármacos , Animales , COVID-19/metabolismo , Humanos , Inflamación/patología , Receptores de Glucocorticoides/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA