Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ann Bot ; 116(5): 739-50, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26229064

RESUMEN

BACKGROUND AND AIMS: Viny species are among the most serious invasive plants, and better knowledge of how vines grow to dominate landscapes is needed. Patches may contain a single genotype (i.e. genet), a competitively dominant genet or many independent but interacting genets, yet the clonal structure of vining species is often not apparent. Molecular markers can discriminate among the genetic identities of entwined vines to reveal the number and spatial distribution of genets. This study investigated how genets are spatially distributed within and among discrete patches of the invasive vine kudzu, Pueraria montana var. lobata, in the United States. It was expected that ramets of genets would be spatially clustered within patches, and that an increase in the number of genets within a patch would be associated with a decrease in the average size of each genet. METHODS: Six discrete kudzu patches were sampled across 2 years, and 1257 samples were genotyped at 21 polymorphic allozyme loci. Variation in genotypic and genetic diversity among patches was quantified and patterns of genet interdigitation were analysed. KEY RESULTS: Substantial genotypic and genetic variation occurred within and among patches. As few as ten overlapping genets spanned up to 68 m(2) in one patch, while >90 % of samples were genetically unique in another patch. Genotypic diversity within patches increased as mean clone size decreased, although spatially widespread genets did not preclude interdigitation. Eight genets were shared across ≥2 patches, suggesting that vegetative dispersal can occur among patches. CONCLUSIONS: Genetically unique kudzu vines are highly interdigitated. Multiple vegetative propagules have become established in spatially discrete patches, probably through the movement of highway construction or maintenance machinery. The results suggest that common methods for controlling invasive vines (e.g. mowing) may inadvertently increase genotypic diversity. Thus, understanding vine architecture and growth has practical implications.


Asunto(s)
Variación Genética , Genotipo , Pueraria/genética , Georgia , Especies Introducidas , Pueraria/clasificación , Pueraria/metabolismo
2.
Nat Commun ; 9(1): 2351, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29907739

RESUMEN

Checkpoint blockade immunotherapy enhances systemic antitumor immune response by targeting T cell inhibitory pathways; however, inadequate T cell infiltration has limited its anticancer efficacy. Radiotherapy (RT) has local immunomodulatory effects that can alter the microenvironment of irradiated tumors to synergize with immune checkpoint blockade. However, even with high doses of radiation, RT has rarely elicited systemic immune responses. Herein, we report the design of two porous Hf-based nanoscale metal-organic frameworks (nMOFs) as highly effective radioenhancers that significantly outperform HfO2, a clinically investigated radioenhancer in vitro and in vivo. Importantly, the combination of nMOF-mediated low-dose RT with an anti-programmed death-ligand 1 antibody effectively extends the local therapeutic effects of RT to distant tumors via abscopal effects. Our work establishes the feasibility of combining nMOF-mediated RT with immune checkpoint blockade to elicit systemic antitumor immunity in non-T cell-inflamed tumor phenotypes without normal tissue toxicity, promising to broaden the application of checkpoint blockade immunotherapy.


Asunto(s)
Antígeno B7-H1/metabolismo , Inmunoterapia/métodos , Estructuras Metalorgánicas/farmacología , Nanotecnología/métodos , Radioterapia/métodos , Animales , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Terapia Combinada , Humanos , Radical Hidroxilo , Terapia de Inmunosupresión , Linfocitos/citología , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Necrosis , Trasplante de Neoplasias , Transducción de Señal
3.
Med Phys ; 44(10): 5367-5377, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28703922

RESUMEN

PURPOSE: X-ray-induced luminescence (XIL) is a hybrid x-ray/optical imaging modality that employs nanophosphors that luminescence in response to x-ray irradiation. X-ray-activated phosphorescent nanoparticles have potential applications in radiation therapy as theranostics, nanodosimeters, or radiosensitizers. Extracting clinically relevant information from the luminescent signal requires the development of a robust imaging model that can determine nanophosphor distributions at depth in an optically scattering environment from surface radiance measurements. The applications of XIL in radiotherapy will be limited by the dose-dependent sensitivity at depth in tissue. We propose a novel geometry called selective plane XIL (SPXIL), and apply it to experimental measurements in optical gel phantoms and sensitivity simulations. METHODS: An imaging model is presented based on the selective plane geometry which can determine the detected diffuse optical signal for a given x-ray dose and nanophosphor distribution at depth in a semi-infinite, optically homogenous material. The surface radiance in the model is calculated using an analytical solution to the extrapolated boundary condition. Y2 O3 :Eu3+ nanoparticles are synthesized and inserted into various optical phantom in order to measure the luminescent output per unit dose for a given concentration of nanophosphors and calibrate an imaging model for XIL sensitivity simulations. SPXIL imaging with a dual-source optical gel phantom is performed, and an iterative Richardson-Lucy deconvolution using a shifted Poisson noise model is applied to the measurements in order to reconstruct the nanophosphor distribution. RESULTS: Nanophosphor characterizations showed a peak emission at 611 nm, a linear luminescent response to tube current and nanoparticle concentration, and a quadratic luminescent response to tube voltage. The luminescent efficiency calculation accomplished with calibrated bioluminescence mouse phantoms determines 1.06 photons were emitted per keV of x-ray radiation absorbed per g/mL of nanophosphor concentration. Sensitivity simulations determined that XIL could detect a concentration of 1 mg/mL of nanophosphors with a dose of 1 cGy at a depth ranging from 2 to 4 cm, depending on the optical parameters of the homogeneous diffuse optical environment. The deconvolution applied to the SPXIL measurements could resolve two sources 1 cm apart up to a depth of 1.75 cm in the diffuse phantom. CONCLUSIONS: We present a novel imaging geometry for XIL in a homogenous, diffuse optical environment. Basic characterization of Y2 O3 :Eu3+ nanophosphors are presented along with XIL/SPXIL measurements in optical gel phantoms. The diffuse optical imaging model is validated using these measurements and then calibrated in order to execute initial sensitivity simulations for the dose-depth limitations of XIL imaging. The SPXIL imaging model is used to perform a deconvolution on a dual-source phantom, which successfully reconstructs the nanophosphor distributions.


Asunto(s)
Luminiscencia , Imagen Óptica/métodos , Calibración , Nanopartículas , Fantasmas de Imagen , Relación Señal-Ruido , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA