RESUMEN
OBJECTIVE: To identify the potential benefits of heightened levels of affect balance in older adults with and without chronic pain on various cognitive domains, physical performance, and perceived cognitive and physical health. METHOD: Ninety-one older adults, some with and some without fibromyalgia (FM) participated. Objective tests included cognitive (immediate and delayed recall, delayed recognition-CERAD 10-item word list) and physical measures (Fullerton Advanced Balance Scale; lower body strength-30-s chair stand; gait velocity-30-ft. walk). Self-report measures were problems with forgetting, activities of daily living (perceived function), and affect (Positive and Negative Affect Scale [PANAS]). Affect balance was calculated as positive minus negative affect from the PANAS. RESULTS: Hierarchical regression analyses revealed that-regardless of FM status-higher affect balance was associated with better episodic memory performance (immediate recall, delayed recognition), better balance, enhanced lower body strength (more chair stands), and healthier gait (30-ft. walk), as well as less forgetfulness and better perceived functional health. CONCLUSION: Increased affect balance was associated with better objective and subjective health in older adults both without and with chronic pain. Positive psychology treatments which increase affect balance are easy to administer, cost effective, and may add an important, additional treatment modality for maintaining health in normal aging adults as well as those with chronic pain. CLINICAL RELEVANCE: In order to help patients with healthy aging, nurses need to be aware of the potential long-term effect of emotional state on overall function and be able to counsel patients regarding potential treatments to enhance positive global emotions such as resilience.
Asunto(s)
Fibromialgia , Actividades Cotidianas , Anciano , Envejecimiento , Cognición , Fibromialgia/complicaciones , Humanos , Rendimiento Físico FuncionalRESUMEN
A reaction design is reported in which a substrate-bound chiral Lewis acid complex absorbs visible light and generates an excited state that directly reacts with a cosubstrate in a highly stereocontrolled fashion. Specifically, a chiral rhodium complex catalyzes visible-light-activated intermolecular [2+2] cycloadditions, providing a wide range of cyclobutanes with up to >99% ee and up to >20:1 d.r. Noteworthy is the ability to create vicinal all-carbon-quaternary stereocenters including spiro centers in an intermolecular fashion.
RESUMEN
Molecular dynamics simulations probe the origins of aberrant functionality of R175H p53, which normally prevent tumorigenesis. This hotspot mutation exhibits loss of its essential zinc cofactor, aggregation, and activation of gain of function promoters, characteristics contributing to the loss of normal p53 activity. This study provided molecular level insight into the reorganization of the hydrogen bonding network and the formation of a hydrophobic patch on the surface of the protein. The hydrogen bonding network globally redistributes at the expense of the stability of the ß-sandwich structure, and surface residues reorganize to expose a 250 Å(2) hydrophobic patch of residues covering approximately 2% of the solvent accessible surface. These changes could both stabilize the protein in the conformation exposing the patch to solvent to mediate the reported aggregation, and cause a destabilization in the area associated with DNA binding residues to affect the specificity. The development of the patch prior to loss of zinc indicates that stabilizing the patch quickly may prevent zinc loss. Considerations for rational design of small molecule therapeutics in light of the structural insight has been discussed and it suggest the positive ring around the hydrophobic patch and conserved residues may constitute a druggable site.
Asunto(s)
Proteína p53 Supresora de Tumor/metabolismo , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica MolecularRESUMEN
In the crystal structure of the title compound, C6H5ClIN, the amino group engages in N-Hâ¯N hydrogen bonding, creating [100] chains. A Clâ¯I contact is observed [3.7850â (16)â Å]. The parallel planes of neigbouring mol-ecules reveal highly offset π-stacking characterized by a centroid-centroid distance of 4.154â (1), a centroid-to-plane distance of 3.553â (3) and ring-offset slippage of 2.151â (6)â Å.
RESUMEN
Casitas B-lymphoma proto-oncogene-b (Cbl-b) is a RING finger E3 ligase that has an important role in effector T cell function, acting as a negative regulator of T cell, natural killer (NK) cell, and B cell activation. A discovery effort toward Cbl-b inhibitors was pursued in which a generative AI design engine, REINVENT, was combined with a medicinal chemistry structure-based design to discover novel inhibitors of Cbl-b. Key to the success of this effort was the evolution of the "Design" phase of the Design-Make-Test-Analyze cycle to involve iterative rounds of an in silico structure-based drug design, strongly guided by physics-based affinity prediction and machine learning DMPK predictive models, prior to selection for synthesis. This led to the accelerated discovery of a potent series of carbamate Cbl-b inhibitors.
Asunto(s)
Carbamatos , Diseño de Fármacos , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-cbl , Proteínas Proto-Oncogénicas c-cbl/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Carbamatos/química , Carbamatos/farmacología , Carbamatos/síntesis química , Humanos , Relación Estructura-Actividad , Modelos Moleculares , Inteligencia Artificial , Descubrimiento de Drogas , Proteínas Adaptadoras Transductoras de SeñalesRESUMEN
Casitas B-lymphoma proto-oncogene-b (Cbl-b), a member of the Cbl family of RING finger E3 ubiquitin ligases, has been demonstrated to play a central role in regulating effector T-cell function. Multiple studies using gene-targeting approaches have provided direct evidence that Cbl-b negatively regulates T, B, and NK cell activation via a ubiquitin-mediated protein modulation. Thus, inhibition of Cbl-b ligase activity can lead to immune activation and has therapeutic potential in immuno-oncology. Herein, we describe the discovery and optimization of an arylpyridone series as Cbl-b inhibitors by structure-based drug discovery to afford compound 31. This compound binds to Cbl-b with an IC50 value of 30 nM and induces IL-2 production in T-cells with an EC50 value of 230 nM. Compound 31 also shows robust intracellular target engagement demonstrated through inhibition of Cbl-b autoubiquitination, inhibition of ubiquitin transfer to ZAP70, and the cellular modulation of phosphorylation of a downstream signal within the TCR axis.
Asunto(s)
Proteínas Proto-Oncogénicas c-cbl , Ubiquitina-Proteína Ligasas , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Linfocitos T/metabolismo , Fosforilación , Ubiquitina/metabolismoRESUMEN
Casitas B-lineage lymphoma proto-oncogene-b (Cbl-b) is a RING finger E3 ligase that is responsible for repressing T-cell, natural killer (NK) cell, and B-cell activation. The robust antitumor activity observed in Cbl-b deficient mice arising from elevated T-cell and NK-cell activity justified our discovery effort toward Cbl-b inhibitors that might show therapeutic promise in immuno-oncology, where activation of the immune system can drive the recognition and killing of cancer cells. We undertook a high-throughput screening campaign followed by structure-enabled optimization to develop a novel benzodiazepine series of potent Cbl-b inhibitors. This series displayed nanomolar levels of biochemical potency, as well as potent T-cell activation. The functional activity of this class of Cbl-b inhibitors was further corroborated with ubiquitin-based cellular assays.
RESUMEN
The generation of surrogate potential energy functions (PEF) that are orders of magnitude faster to compute but as accurate as the underlying training data from high-level electronic structure methods is one of the most promising applications of fitting procedures in chemistry. In previous work, we have shown that transition state force fields (TSFFs), fitted to the functional form of MM3* force fields using the quantum guided molecular mechanics (Q2MM) method, provide an accurate description of transition states that can be used for stereoselectivity predictions of small molecule reactions. Here, we demonstrate the applicability of the method for fit TSFFs to the well-established Amber force field, which could be used for molecular dynamics studies of enzyme reaction. As a case study, the fitting of a TSFF to the second hydride transfer in Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl coenzyme A reductase (PmHMGR) is used. The differences and similarities to fitting of small molecule TSFFs are discussed.
Asunto(s)
Coenzima A , Simulación de Dinámica MolecularRESUMEN
Gene expression is regulated by promoters and enhancers marked by histone H3 lysine 27 acetylation (H3K27ac), which is established by the paralogous histone acetyltransferases (HAT) EP300 and CBP. These enzymes display overlapping regulatory roles in untransformed cells, but less characterized roles in cancer cells. We demonstrate that the majority of high-risk pediatric neuroblastoma (NB) depends on EP300, whereas CBP has a limited role. EP300 controls enhancer acetylation by interacting with TFAP2ß, a transcription factor member of the lineage-defining transcriptional core regulatory circuitry (CRC) in NB. To disrupt EP300, we developed a proteolysis-targeting chimera (PROTAC) compound termed "JQAD1" that selectively targets EP300 for degradation. JQAD1 treatment causes loss of H3K27ac at CRC enhancers and rapid NB apoptosis, with limited toxicity to untransformed cells where CBP may compensate. Furthermore, JQAD1 activity is critically determined by cereblon (CRBN) expression across NB cells. SIGNIFICANCE: EP300, but not CBP, controls oncogenic CRC-driven transcription in high-risk NB by binding TFAP2ß. We developed JQAD1, a CRBN-dependent PROTAC degrader with preferential activity against EP300 and demonstrated its activity in NB. JQAD1 has limited toxicity to untransformed cells and is effective in vivo in a CRBN-dependent manner. This article is highlighted in the In This Issue feature, p. 587.
Asunto(s)
Neuroblastoma , Secuencias Reguladoras de Ácidos Nucleicos , Acetilación , Niño , Proteína p300 Asociada a E1A/genética , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , OncogenesRESUMEN
Understanding the mechanisms of enzymatic catalysis requires a detailed understanding of the complex interplay of structure and dynamics of large systems that is a challenge for both experimental and computational approaches. More importantly, the computational demands of QM/MM simulations mean that the dynamics of the reaction can only be considered on a timescale of nanoseconds even though the conformational changes needed to reach the catalytically active state happen on a much slower timescale. Here we demonstrate an alternative approach that uses transition state force fields (TSFFs) derived by the quantum-guided molecular mechanics (Q2MM) method that provides a consistent treatment of the entire system at the classical molecular mechanics level and allows simulations at the microsecond timescale. Application of this approach to the second hydride transfer transition state of HMG-CoA reductase from Pseudomonas mevalonii (PmHMGR) identified three remote residues, R396, E399 and L407, (15-27 Å away from the active site) that have a remote dynamic effect on enzyme activity. The predictions were subsequently validated experimentally via site-directed mutagenesis. These results show that microsecond timescale MD simulations of transition states are possible and can predict rather than just rationalize remote allosteric residues.
RESUMEN
Niemann-Pick disease type C1 (NPC1) is a rare genetic cholesterol storage disorder caused by mutations in the NPC1 gene. Mutations in this transmembrane late endosome protein lead to loss of normal cholesterol efflux from late endosomes and lysosomes. It has been shown that broad spectrum histone deacetylase inhibitors (HDACi's) such as Vorinostat correct the cholesterol accumulation phenotype in the majority of NPC1 mutants tested in cultured cells. In order to determine the optimal specificity for HDACi correction of the mutant NPC1s, we screened 76 HDACi's of varying specificity. We tested the ability of these HDACi's to correct the excess accumulation of cholesterol in patient fibroblast cells that homozygously express NPC1 I1061T , the most common mutation. We determined that inhibition of HDACs 1, 2, and 3 is important for correcting the defect, and combined inhibition of all three is needed to achieve the greatest effect, suggesting a need for multiple effects of the HDACi treatments. Identifying the specific HDACs involved in the process of regulating cholesterol trafficking in NPC1 will help to focus the search for more specific druggable targets.
RESUMEN
Zampanolide and dactylolide are microtubule-stabilizing polyketides possessing potent cytotoxicity towards a variety of cancer cell lines. Using our understanding of the conformational preferences of the macrolide core in both natural products, we hypothesized that analogues lacking the C17-methyl group would maintain the necessary conformation for bioactivity while reducing the number of synthetic manipulations necessary for their synthesis. Analogues 3, 4 and 5 were prepared via total synthesis, and their conformational preferences were determined through computational and high-field NMR studies. While no observable activities were present in dactylolide analogues 3 and 4, zampanolide analogue 5 exhibited sub-micromolar cytotoxicity. Herein, we describe these efforts towards understanding the structure- and conformation-activity relationships of dactylolide and zampanolide.
RESUMEN
Identity determining transcription factors (TFs), or core regulatory (CR) TFs, are governed by cell-type specific super enhancers (SEs). Drugs to selectively inhibit CR circuitry are of high interest for cancer treatment. In alveolar rhabdomyosarcoma, PAX3-FOXO1 activates SEs to induce the expression of other CR TFs, providing a model system for studying cancer cell addiction to CR transcription. Using chemical genetics, the systematic screening of chemical matter for a biological outcome, here we report on a screen for epigenetic chemical probes able to distinguish between SE-driven transcription and constitutive transcription. We find that chemical probes along the acetylation-axis, and not the methylation-axis, selectively disrupt CR transcription. Additionally, we find that histone deacetylases (HDACs) are essential for CR TF transcription. We further dissect the contribution of HDAC isoforms using selective inhibitors, including the newly developed selective HDAC3 inhibitor LW3. We show HDAC1/2/3 are the co-essential isoforms that when co-inhibited halt CR transcription, making CR TF sites hyper-accessible and disrupting chromatin looping.
Asunto(s)
Elementos de Facilitación Genéticos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Rabdomiosarcoma/genética , Acetilación/efectos de los fármacos , Línea Celular Tumoral , Cromatina/efectos de los fármacos , Cromatina/metabolismo , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Ensayos Analíticos de Alto Rendimiento , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/química , Humanos , Simulación de Dinámica Molecular , Sondas Moleculares/química , Sondas Moleculares/farmacología , Proteínas de Fusión Oncogénica/genética , Factores de Transcripción Paired Box/genética , Cultivo Primario de Células , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Rabdomiosarcoma/patología , Análisis de Secuencia de ARN , Transcripción Genética/efectos de los fármacosRESUMEN
Quantum-Guided Molecular Mechanics (Q2MM) can be used to derive transition state force fields (TSFFs) that allow the fast and accurate predictions of stereoselectivity for a wide range of catalytic enantioselective reactions. The basic ideas behind the derivation of TSFFs using Q2MM are discussed and the steps involved in obtaining a TSFF using the Q2MM code, publically available at github.com/q2mm, are shown. The applicability for a range of reactions, including several non-standard applications of Q2MM, is demonstrated. Future developments of the method are also discussed.