Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 325(3): C592-C598, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37458440

RESUMEN

Voltage-gated calcium channels (CaV) conduct Ca2+ influx promoting neurotransmitters and hormone release. CaV are finely regulated by voltage-dependent and independent pathways either by G-protein-coupled receptors (GPCRs) or intramembrane lipids, respectively, in neurons and glands. Interestingly, pancreatic ß-cells are abundantly innervated by both sympathetic and parasympathetic neurons, while a variety of high-voltage activated (HVA) Ca2+ channels are present in these cells. Thus, autonomic system seems to exert a tonic inhibition on HVA Ca2+ channels throughout GPCRs, constitutively preventing hormone secretion. Therefore, this work aimed to investigate noradrenergic and cholinergic inhibition of HVA Ca2+ channels in pancreatic ß-cells. Experiments were conducted in pancreatic ß-cells of rat by using patch-clamping methods, immunocytochemistry, pharmacological probes, and biochemical reagents. A voltage-clamp protocol with a strong depolarizing prepulse was used to unmask tonic inhibition. Herein, we consistently find a basal tonic inhibition of HVA Ca2+ channels according to a GPCRs regulation. Facilitation ratio is enhanced by noradrenaline (NA) according to a voltage-dependent regulation and a membrane-delimited mechanism, while no facilitation changes are observed with carbachol or phosphatidylinositol 4,5-bisphosphate (PIP2). Furthermore, carbachol or intramembrane lipids, such as PIP2, do not change facilitation ratio according to a voltage-independent regulation. Together, HVA Ca2+ channels of pancreatic ß-cells are constitutively inhibited by GPCRs, suggesting a natural brake preventing cells from exhaustive insulin secretion.NEW & NOTEWORTHY Our results support the hypothesis that GPCRs tonically inhibit HVA Ca2+ channels in pancreatic ß-cells. A voltage-clamp protocol with a strong depolarizing prepulse was used to unmask voltage-dependent inhibition of Ca2+ channels. The novelty of these results strengthens the critical role of Gßγ's in Ca2+ channel regulation, highlighting kinetic slowing and increased facilitation ratio. Together, HVA Ca2+ channels of pancreatic ß-cells are constitutively inhibited by GPCRs underlying fine-tuning modulation of insulin secretion.


Asunto(s)
Canales de Calcio , Proteínas de Unión al GTP , Ratas , Animales , Canales de Calcio/metabolismo , Carbacol , Proteínas de Unión al GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Hormonas , Lípidos , Calcio/metabolismo
2.
Arch Biochem Biophys ; 735: 109520, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36646267

RESUMEN

Lipid regulation of ion channels is a fundamental mechanism in physiological processes as of neurotransmitter release and hormone secretion. Ceramide is a bioactive lipid proposed as a regulator of several voltage-gated ion channels including potassium channels (Kv). It is generated either de novo or by sphingomyelin (SM) hydrolysis in membranes of mammalian cells. In pancreatic ß-cells, ceramide is the main sphingolipid associated with lipotoxicity and likely involved in cell dysfunction. Despite of the wealth of information regarding regulation of potassium channels by ceramides, the regulation of Kv channels by accumulated ceramide in native pancreatic ß-cells has not been investigated. To do so, we used either the C2-ceramide, a cell-permeable short-chain analogue, or a sphingomyelinase (SMase C), a hydrolase causing ceramide to elevate from an endogenous production, in pancreatic ß-cells of rat. C2-ceramide markedly accelerates steady-state current inactivation according to kinetic changes in the channel machinery. Interestingly, only C2-ceramide accelerates current inactivation while SMase C decreases both, peak-current and step-current amplitude supporting differential effects of ceramide derivatives. A specific inhibitor of the Kv2.1 channel (GxTX-1E), readily inhibits a fraction of the Kv channel current while no further inhibition by C2-ceramide superfusion can be observed supporting Kv2.1 channel involvement in the ceramide inhibition. Thus, intramembrane ceramide accumulation, as a lipidic metabolite released under cell-stress conditions, may alter pancreatic ß-cell repolarization and secretion. These results may provide a new insight regarding lipid-protein regulation and advance our understanding in ceramide actions on Kv channels in pancreatic ß-cells.


Asunto(s)
Células Secretoras de Insulina , Canales de Potasio , Ratas , Animales , Canales de Potasio/metabolismo , Ceramidas/metabolismo , Ceramidas/farmacología , Células Secretoras de Insulina/metabolismo , Canales Iónicos/metabolismo , Mamíferos/metabolismo
3.
Biochem Cell Biol ; 99(6): 717-724, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34096319

RESUMEN

An understanding of the biochemistry of the giant cell tumour of bone (GCTB) provides an opportunity for the development of prognostic markers and identification of therapeutic targets. Based on metabolomic analysis, we proposed glycerophospholipid metabolism as the altered pathway in GCTB., The objective of this study was to identify these altered metabolites. Using phosphorus-31 nuclear magnetic resonance spectroscopy (31P-NMR), sphingomyelin was determined to be the most dysregulated phospholipid in tissue samples from six patients with GCTB. Enzymes related to its biosynthesis and hydrolysis were examined using immunodetection techniques. High expression of sphingomyelin synthases 1 and 2, but low expression of neutral sphingomyelinase 2 (nSMase2) was found in GCTB tissues compared to non-neoplastic bone tissues. Sphingomyelin/ceramide biosynthesis is dysregulated in GCTB due to alterations in the expression of SMS1, SMS2, and nSMase2.


Asunto(s)
Neoplasias Óseas , Tumor Óseo de Células Gigantes , Huesos , Humanos , Espectroscopía de Resonancia Magnética , Esfingomielinas
4.
Chem Biodivers ; 16(5): e1800479, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30807682

RESUMEN

This study describes the 1 H-NMR-based metabolomics profiling of juices from citrus fruits harvested in the state of Veracruz, México. The hydrophilic profile of commercial lemons (Agrio and Persian), tangerines (Fremont and Mónica), oranges (Valencia and Washington Navel), and grapefruits (Red Ruby and Rio Red) was determined. According to our results, 35 metabolites were identified in the 1 H-NMR profiling. The statistical differences obtained by PCA and OPLS-DA revealed that specific amino acids, sugars, and organic acids were differential metabolites in the species and cultivars studied. High endogenous levels of sucrose (10-190 mM), α-glucose, ß-glucose (α- and ß-isomers, 40-205 mm), and fructose (36-170 mm) were detected in the juices of grapefruits, oranges, and tangerines, whereas citric acid (40-530 mm) was the principal organic acid in the juices of lemons. To calculate the specific amounts of metabolites from these species and their cultivars, the results were finely analyzed using the qNMR method. According to these calculations, Valencia oranges had the highest concentration of ascorbic acid (>2 mm). The described 1 H-NMR method is highly reproducible, inexpensive, and highly robust in comparison to other analytical methods used to determine the hydrophilic profile of citrus juices.


Asunto(s)
Citrus/metabolismo , Jugos de Frutas y Vegetales/análisis , Espectroscopía de Resonancia Magnética/métodos , Metaboloma , Aminoácidos/metabolismo , Ácido Ascórbico/análisis , Ácido Cítrico/análisis , Citrus/química , Análisis por Conglomerados , Análisis Discriminante , Fructosa/metabolismo , Glucosa/metabolismo , Análisis de los Mínimos Cuadrados , México , Análisis de Componente Principal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA