Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37569535

RESUMEN

Understanding the genetic basis of rust resistance in elite CIMMYT wheat germplasm enhances breeding and deployment of durable resistance globally. "Mokue#1", released in 2023 in Pakistan as TARNAB Gandum-1, has exhibited high levels of resistance to stripe rust, leaf rust, and stem rust pathotypes present at multiple environments in Mexico and Kenya at different times. To determine the genetic basis of resistance, a F5 recombinant inbred line (RIL) mapping population consisting of 261 lines was developed and phenotyped for multiple years at field sites in Mexico and Kenya under the conditions of artificially created rust epidemics. DArTSeq genotyping was performed, and a linkage map was constructed using 7892 informative polymorphic markers. Composite interval mapping identified three significant and consistent loci contributed by Mokue: QLrYr.cim-1BL and QLrYr.cim-2AS on chromosome 1BL and 2AS, respectively associated with stripe rust and leaf rust resistance, and QLrSr.cim-2DS on chromosome 2DS for leaf rust and stem rust resistance. The QTL on 1BL was confirmed to be the Lr46/Yr29 locus, whereas the QTL on 2AS represented the Yr17/Lr37 region on the 2NS/2AS translocation. The QTL on 2DS was a unique locus conferring leaf rust resistance in Mexico and stem rust resistance in Kenya. In addition to these pleiotropic loci, four minor QTLs were also identified on chromosomes 2DL and 6BS associated with stripe rust, and 3AL and 6AS for stem rust, respectively, using the Kenya disease severity data. Significant decreases in disease severities were also demonstrated due to additive effects of QTLs when present in combinations.


Asunto(s)
Basidiomycota , Triticum , Triticum/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Fitomejoramiento , Genómica
2.
Theor Appl Genet ; 134(7): 2213-2220, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33839800

RESUMEN

KEY MESSAGE: An adult plant stripe rust resistance gene Yr75 was located on the long arm of chromosome 7A. Fine mapping of the region identified markers closely linked with Yr75. Australian wheat cultivar Axe produced resistant to moderately resistant stripe rust responses under field conditions and was exhibiting seedling responses varying from 33C to 3+ under greenhouse conditions. Experiments covering tests at different growth stages (2nd, 3rd and 4th leaf stages) demonstrated the clear expression of resistance at the 4th leaf stage under controlled-environment greenhouse conditions. A recombinant inbred line (RIL) population was developed from the Axe/Nyabing-3 (Nyb) cross. Genetic analysis of Axe/Nyb RIL population in the greenhouse at the 4th leaf stage showed monogenic inheritance of stripe rust resistance. Selective genotyping using the iSelect 90 K Infinium SNP genotyping array was performed, and the resistance locus was mapped to the long arm of chromosome 7A and named Yr75. The Axe/Nyb RIL population was genotyped using a targeted genotype-by-sequencing assay, and the resistance-linked SNPs were converted into kompetitive allele-specific PCR (KASP) markers. These markers were tested on the entire Axe/Nyb RIL population, and markers sunKASP_430 and sunKASP_427 showed close association with Yr75 in the Axe/Nyb RIL population. A high-resolution mapping family of 1032 F2 plants from the Axe/Nyb cross was developed and genotyped with sunKASP_430 and sunKASP_427, and these markers flanked Yr75 at 0.3 cM and 0.4 cM, respectively. These markers cover 1.24 Mb of the physical map of Chinese Spring, and this information will be useful for map-based cloning of Yr75.


Asunto(s)
Basidiomycota/patogenicidad , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Triticum/genética , Australia , Mapeo Cromosómico , Genes de Plantas , Genotipo , Fenotipo , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Triticum/microbiología
3.
Theor Appl Genet ; 134(3): 849-858, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33388887

RESUMEN

KEY MESSAGE: A new leaf rust resistance gene Lr80 was identified and closely linked markers were developed for its successful pyramiding with other marker-tagged genes to achieve durable control of leaf rust. Common wheat landrace Hango-2, collected in 2006 from the Himalayan area of Hango, District Kinnaur, in Himachal Pradesh, exhibited a very low infection type (IT;) at the seedling stage to all Indian Puccinia triticina (Pt) pathotypes, except the pathotype 5R9-7 which produced IT 3+. Genetic analysis based on Agra Local/Hango-2-derived F3 families indicated monogenic control of leaf rust resistance, and the underlying locus was temporarily named LrH2. Bulked segregant analysis using 303 simple sequence repeat (SSR) markers located LrH2 in the short arm of chromosome 2D. An additional set of 10 chromosome 2DS-specific markers showed polymorphism between the parents and these were mapped on the entire Agra Local/Hango-2 F3 population. LrH2 was flanked by markers cau96 (distally) and barc124 (proximally). The 90 K Infinium SNP array was used to identify SNP markers linked with LrH2. Markers KASP_17425 and KASP_17148 showed association with LrH2. Comparison of seedling leaf rust response data and marker locations across different maps demonstrated the uniqueness of LrH2 and it was formally named Lr80. The Lr80-linked markers KASP_17425, KASP_17148 and barc124 amplified alleles/products different to Hango-2 in 82 Australian cultivars indicating their robustness for marker-assisted selection of this gene in wheat breeding programs.


Asunto(s)
Basidiomycota/fisiología , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Fitomejoramiento , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Mapeo Cromosómico/métodos , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/inmunología , Ligamiento Genético , Marcadores Genéticos , Enfermedades de las Plantas/microbiología , Triticum/inmunología , Triticum/microbiología
4.
Theor Appl Genet ; 132(11): 3169-3176, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31463519

RESUMEN

KEY MESSAGE: Stripe rust resistance gene, Yr82, was mapped in chromosome 3BL using SNP markers. Yr82 interacted with Yr29 to produce lower stripe rust responses at the adult plant stage. Landrace Aus27969 produced low infection types against Australian Puccinia striiformis f. sp. tritici (Pst) pathotypes. A recombinant inbred line (RIL) F7 population from the Aus27969/Avocet S cross was developed. Monogenic segregation for seedling stripe rust response was observed among the RIL population, and the resistance locus was named Yr82. Bulk segregant analysis performed using the iSelect wheat 90 K Infinium SNP array located Yr82 in the long arm of chromosome 3B. The RIL population was screened against stripe rust under field conditions and was genotyped with targeted genotyping-by-sequencing assay. QTL analysis detected the involvement of chromosomes 1B and 3B in controlling stripe rust resistance carried by Aus27969. Incorporation of Yr82 and marker SNPLr46G22 into the linkage map showed that the QTL in 1B and 3B represented Yr29 and Yr82, respectively. Kompetitive allele-specific PCR (KASP) markers sun KASP_300 and KASP_8775 flanked Yr82 distally and proximally, respectively, each at 2 cM distance. These Yr82-linked markers were polymorphic among 84% of Australian cultivars and can be used for marker-assisted selection of Yr82.


Asunto(s)
Basidiomycota/patogenicidad , Resistencia a la Enfermedad/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Triticum/genética , Alelos , Australia , Mapeo Cromosómico , Cruzamientos Genéticos , Marcadores Genéticos , Genotipo , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Triticum/microbiología
5.
Theor Appl Genet ; 131(7): 1459-1467, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29560515

RESUMEN

KEY MESSAGE: A new adult plant stripe rust resistance gene, Yr80, was identified in a common wheat landrace Aus27284. Linked markers were developed and validated for their utility in marker-assisted selection. Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is among the most important constraints to global wheat production. The identification and characterisation of new sources of host plant resistance enrich the gene pool and underpin deployment of resistance gene pyramids in new cultivars. Aus27284 exhibited resistance at the adult plant stage against predominant Pst pathotypes and was crossed with a susceptible genotype Avocet S. A recombinant inbred line (RIL) population comprising 121 lines was developed and tested in the field at three locations in 2016 and two in 2017 crop seasons. Monogenic segregation for adult plant stripe rust response was observed among the Aus27284/Avocet S RIL population and the underlying locus was temporarily designated YrAW11. Bulked-segregant analysis using the Infinium iSelect 90K SNP wheat array placed YrAW11 in chromosome 3B. Kompetitive allele specific PCR (KASP) primers were designed for the linked SNPs and YrAW11 was flanked by KASP_65624 and KASP_53292 (3 cM) proximally and KASP_53113 (4.9 cM) distally. A partial linkage map of the genomic region carrying YrAW11 comprised nine KASP and two SSR markers. The physical position of KASP markers in the pseudomolecule of chromosome 3B placed YrAW11 in the long arm and the location of markers gwm108 and gwm376 in the deletion bin 3BL2-0.22 supported this conclusion. As no other stripe rust resistance locus has been reported in chromosome 3BL, YrAW11 was formally designated Yr80. Marker KASP_ 53113 was polymorphic among 94% of 81 Australian wheat cultivars used for validation.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Triticum/genética , Alelos , Basidiomycota , Mapeo Cromosómico , Cartilla de ADN , Marcadores Genéticos , Genotipo , Repeticiones de Microsatélite , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Triticum/metabolismo
6.
Theor Appl Genet ; 131(5): 1091-1098, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29396589

RESUMEN

KEY MESSAGE: A new leaf rust resistance gene Lr79 has been mapped in the long arm of chromosome 3B and a linked marker was identified for marker-assisted selection. Aus26582, a durum wheat landrace from the A. E. Watkins Collection, showed seedling resistance against durum-specific and common wheat-specific Puccinia triticina (Pt) pathotypes. Genetic analysis using a recombinant inbred line (RIL) population developed from a cross between Aus26582 and the susceptible parent Bansi with Australian Pt pathotype showed digenic inheritance and the underlying loci were temporarily named LrAW2 and LrAW3. LrAW2 was located in chromosome 6BS and this study focused on characterisation of LrAW3 using RILs lacking LrAW2. LrAW3 was incorporated into the DArTseq map of Aus26582/Bansi and was located in chromosome 3BL. Markers linked with LrAW3 were developed from the chromosome survey sequence contig 3B_10474240 in which closely-linked DArTseq markers 1128708 and 3948563 were located. Although bulk segregant analysis (BSA) with the 90 K Infinium array identified 51 SNPs associated with LrAW3, only one SNP-derived KASP marker mapped close to the locus. Deletion bin mapping of LrAW3-linked markers located LrAW3 between bins 3BL11-0.85-0.90 and 3BL7-0.63. Since no other all stage leaf rust resistance gene is located in chromosome 3BL, LrAW3 represented a new locus and was designated Lr79. Marker sun786 mapped 1.8 cM distal to Lr79 and Aus26582 was null for this locus. However, the marker can be reliably scored as it also amplifies a monomorphic fragment that serves as an internal control to differentiate the null status of Aus26582 from reaction failure. This marker was validated among a set of durum and common wheat cultivars and was shown to be useful for marker-assisted selection of Lr79 at both ploidy levels.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Triticum/genética , Basidiomycota , Mapeo Cromosómico , Marcadores Genéticos , Genotipo , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Triticum/microbiología
7.
Theor Appl Genet ; 130(3): 495-504, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27866228

RESUMEN

KEY MESSAGE: Fine mapping of Yr47 and Lr52 in chromosome arm 5BS of wheat identified close linkage of the marker sun180 to both genes and its robustness for marker-assisted selection was demonstrated. The widely effective and genetically linked rust resistance genes Yr47 and Lr52 have previously been mapped in the short arm of chromosome 5B in two F3 populations (Aus28183/Aus27229 and Aus28187/Aus27229). The Aus28183/Aus27229 F3 population was advanced to generate an F6 recombinant inbred line (RIL) population to identify markers closely linked with Yr47 and Lr52. Diverse genomic resources including flow-sorted chromosome survey sequence contigs representing the orthologous region in Brachypodium distachyon, the physical map of chromosome arm 5BS, expressed sequence tags (ESTs) located in the 5BS6-0.81-1.00 deletion bin and resistance gene analog contigs of chromosome arm 5BS were used to develop markers to saturate the target region. Selective genotyping was also performed using the iSelect 90 K Infinium wheat SNP assay. A set of SSR, STS, gene-based and SNP markers were developed and genotyped on the Aus28183/Aus27229 RIL population. Yr47 and Lr52 are genetically distinct genes that mapped 0.4 cM apart in the RIL population. The SSR marker sun180 co-segregated with Lr52 and mapped 0.4 cM distal to Yr47. In a high resolution mapping population of 600 F2 genotypes Yr47 and Lr52 mapped 0.2 cM apart and marker sun180 was placed 0.4 cM distal to Lr52. The amplification of a different sun180 amplicon (195 bp) than that linked with Yr47 and Lr52 (200 bp) in 204 diverse wheat genotypes demonstrated its robustness for marker-assisted selection of these genes.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Triticum/genética , Basidiomycota , Mapeo Cromosómico , ADN de Plantas/genética , Etiquetas de Secuencia Expresada , Ligamiento Genético , Marcadores Genéticos , Genotipo , Repeticiones de Microsatélite , Fenotipo , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Lugares Marcados de Secuencia , Triticum/microbiología
8.
Theor Appl Genet ; 130(3): 587-595, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27913833

RESUMEN

KEY MESSAGE: The shortening of Aegilops speltoides segment did not facilitate recombination between stem rust resistance genes Sr36 and Sr39 . Robustness of marker rwgs28 for marker-assisted selection of Sr39 was demonstrated. Stem rust resistance genes Sr39 and Sr36 were transferred from Aegilops speltoides and Triticum timopheevii, respectively, to chromosome 2B of wheat. Genetic stocks RL6082 and RWG1 carrying Sr39 on a large and a shortened Ae. speltoides segments, respectively, and the Sr36-carrying Australian wheat cultivar Cook were used in this study. This investigation was planned to determine the genetic relationship between these genes. Stem rust tests on F3 populations derived from RL6082/Cook and RWG1/Cook crosses showed tight repulsion linkage between Sr39 and Sr36. The genomic in situ hybridization analysis of heterozygous F3 family from the RWG1/Cook population showed that the translocated segments do not overlap. Meiotic analysis on the F1 plant from RWG1/Cook showed two univalents at the metaphase and anaphase stages in a majority of the cells indicating absence of pairing. Since meiotic pairing has been reported to initiate at the telomere, pairing and recombination may be inhibited due to very little wheat chromatin in the distal end of the chromosome arm 2BS in RWG1. The Sr39-carrying large Ae. speltoides segment transmitted preferentially in the RL6082/Cook F3 population, whereas the Sr36-carrying T. timopheevii segment over-transmitted in the RWG1/Cook cross. Genotyping with the co-dominant Sr39- and Sr36-linked markers rwgs28 and stm773-2, respectively, matched the phenotypic classification of F3 families. The RWG1 allele amplified by rwgs28 was diagnostic for the shortened Ae. speltoides segment and alternate alleles were amplified in 29 Australian cultivars. Marker rwgs28 will be useful in marker-assisted pyramiding of Sr39 with other genes.


Asunto(s)
Resistencia a la Enfermedad/genética , Ligamiento Genético , Enfermedades de las Plantas/genética , Triticum/genética , Alelos , Basidiomycota , Cromosomas de las Plantas , Cruzamientos Genéticos , Genes de Plantas , Marcadores Genéticos , Genotipo , Fenotipo , Fitomejoramiento , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/microbiología , Poaceae/genética , Translocación Genética , Triticum/microbiología
9.
Phytopathology ; 107(11): 1381-1387, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28812937

RESUMEN

Leaf rust, caused by Puccinia triticina, is a constraint to durum wheat (Triticum turgidum subsp. durum) production, and landraces are reported to be an important source of resistance. Two Portuguese landraces (Aus26582 and Aus26579) showed resistance against durum-specific P. triticina races and were crossed with a susceptible landrace (Bansi) to develop recombinant inbred line (RIL) populations. Monogenic segregation for leaf rust resistance was observed among both RIL populations. The underlying locus, temporarily named LrAW2, was mapped to the short arm of chromosome 6B in the Aus26582/Bansi population and five DArTseq markers cosegregated with LrAW2. Simple sequence repeat markers sun683 and sun684, developed from the chromosome survey sequence (CSS) contig 6BS_2963854, identified through BlastN search of cosegregating DArTseq markers in the International Wheat Genome Sequencing Consortium database, cosegregated with LrAW2. Comparison of the CSS contig 6BS_2963854-based sequences amplified from parental genotypes led to the development of marker sunKASP_60, which also showed close linkage with LrAW2. Markers sun684 and sunKASP_60 showed close association with LrAW2 in both RIL populations. The amplification of LrAW2-specific products by linked markers in Aus26582, Aus26579, and Guayacan (Lr61) indicated that LrAW2 may be Lr61. The alternate amplicon or haplotype produced with LrAW2-linked markers in Australian durum cultivars demonstrated their effectiveness in marker-assisted selection.


Asunto(s)
Basidiomycota/fisiología , Predisposición Genética a la Enfermedad , Enfermedades de las Plantas/microbiología , Triticum/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Ligamiento Genético , Genoma de Planta , Enfermedades de las Plantas/genética
10.
Plants (Basel) ; 12(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37111824

RESUMEN

The Ug99-effective stem rust resistance gene Sr48 was mapped to chromosome 2A based on its repulsion linkage with Yr1 in an Arina/Forno recombinant inbred line (RIL) population. Attempts to identify markers closely linked to Sr48 using available genomic resources were futile. This study used an Arina/Cezanne F5:7 RIL population to identify markers closely linked with Sr48. Using the Arina/Cezanne DArTseq map, Sr48 was mapped on the short arm of chromosome 2D and it co-segregated with 12 markers. These DArTseq marker sequences were used for BlastN search to identify corresponding wheat chromosome survey sequence (CSS) contigs, and PCR-based markers were developed. Two simple sequence repeat (SSR) markers, sun590 and sun592, and two Kompetitive Allele-Specific PCR (KASP) markers were derived from the contig 2DS_5324961 that mapped distal to Sr48. Molecular cytogenetic analysis using sequential fluorescent in situ hybridization (FISH) and genomic in situ hybridization (GISH) identified a terminal translocation of chromosome 2A in chromosome 2DL of Forno. This translocation would have led to the formation of a quadrivalent involving chromosomes 2A and 2D in the Arina/Forno population, which would have exhibited pseudo-linkage between Sr48 and Yr1 in chromosome 2AL. Polymorphism of the closet marker sunKASP_239 among a set of 178 wheat genotypes suggested that this marker can be used for marker-assisted selection of Sr48.

11.
Front Plant Sci ; 13: 931423, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003814

RESUMEN

Barley is considered an ideal crop to study cereal genetics due to its close relationship with wheat and diploid ancestral genome. It plays a crucial role in reducing risks to global food security posed by climate change. Genetic variations in the traits of interest in crops are vital for their improvement. DNA markers have been widely used to estimate these variations in populations. With the advancements in next-generation sequencing, breeders could access different types of genetic variations within different lines, with single-nucleotide polymorphisms (SNPs) being the most common type. However, genotyping barley with whole genome sequencing (WGS) is challenged by the higher cost and computational demand caused by the large genome size (5.5GB) and a high proportion of repetitive sequences (80%). Genotyping-by-sequencing (GBS) protocols based on restriction enzymes and target enrichment allow a cost-effective SNP discovery by reducing the genome complexity. In general, GBS has opened up new horizons for plant breeding and genetics. Though considered a reliable alternative to WGS, GBS also presents various computational difficulties, but GBS-specific pipelines are designed to overcome these challenges. Moreover, a robust design for GBS can facilitate the imputation to the WGS level of crops with high linkage disequilibrium. The complete exploitation of GBS advancements will pave the way to a better understanding of crop genetics and offer opportunities for the successful improvement of barley and its close relatives.

12.
Front Plant Sci ; 10: 1787, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32117347

RESUMEN

Leaf rust, caused by Puccinia triticina, threatens global wheat production due to the constant evolution of virulent pathotypes that defeat commercially deployed all stage-resistance (ASR) genes in modern cultivars. Hence, the deployment of combinations of adult plant resistance (APR) and ASR genes in new wheat cultivars is desirable. Adult plant resistance gene Lr49 was previously mapped on the long arm of chromosome 4B of cultivar VL404 and flanked by microsatellite markers barc163 (8.1 cM) and wmc349 (10.1 cM), neither of which was sufficiently closely linked for efficient marker assisted selection. This study used high-density SNP genotyping and flow sorted chromosome sequencing to fine-map the Lr49 locus as a starting point to develop a diagnostic marker for use in breeding and to clone this gene. Marker sunKASP_21 was mapped 0.4 cM proximal to Lr49, whereas a group of markers including sunKASP_24 were placed 0.6 cM distal to this gene. Testing of the linked markers on 75 Australian and 90 European cultivars with diverse genetic backgrounds showed that sunKASP_21 was most strongly associated with Lr49. Our results also show that the Lr49 genomic region contains structural variation relative to the reference stock Chinese Spring, possibly an inverted genomic duplication, which introduces a new set of challenges for the Lr49 cloning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA