Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circulation ; 146(15): 1159-1169, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36073365

RESUMEN

BACKGROUND: Transplantation of pluripotent stem cell-derived cardiomyocytes represents a promising therapeutic strategy for cardiac regeneration, and the first clinical studies in patients with heart failure have commenced. Yet, little is known about the mechanism of action underlying graft-induced benefits. Here, we explored whether transplanted cardiomyocytes actively contribute to heart function. METHODS: We injected cardiomyocytes with an optogenetic off-on switch in a guinea pig cardiac injury model. RESULTS: Light-induced inhibition of engrafted cardiomyocyte contractility resulted in a rapid decrease of left ventricular function in ≈50% (7/13) animals that was fully reversible with the offset of photostimulation. CONCLUSIONS: Our optogenetic approach demonstrates that transplanted cardiomyocytes can actively participate in heart function, supporting the hypothesis that the delivery of new force-generating myocardium can serve as a regenerative therapeutic strategy.


Asunto(s)
Miocitos Cardíacos , Células Madre Pluripotentes , Animales , Diferenciación Celular/fisiología , Cobayas , Miocardio , Miocitos Cardíacos/trasplante , Células Madre Pluripotentes/fisiología , Función Ventricular Izquierda
2.
Pflugers Arch ; 475(12): 1463-1477, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863976

RESUMEN

Optogenetic actuators are rapidly advancing tools used to control physiology in excitable cells, such as neurons and cardiomyocytes. In neuroscience, these tools have been used to either excite or inhibit neuronal activity. Cell type-targeted actuators have allowed to study the function of distinct cell populations. Whereas the first described cation channelrhodopsins allowed to excite specific neuronal cell populations, anion channelrhodopsins were used to inhibit neuronal activity. To allow for simultaneous excitation and inhibition, opsin combinations with low spectral overlap were introduced. BiPOLES (Bidirectional Pair of Opsins for Light-induced Excitation and Silencing) is a bidirectional optogenetic tool consisting of the anion channel Guillardia theta anion-conducting channelrhodopsin 2 (GtACR2 with a blue excitation spectrum and the red-shifted cation channel Chrimson. Here, we studied the effects of BiPOLES activation in cardiomyocytes. For this, we knocked in BiPOLES into the adeno-associated virus integration site 1 (AAVS1) locus of human-induced pluripotent stem cells (hiPSC), subjected these to cardiac differentiation, and generated BiPOLES expressing engineered heart tissue (EHT) for physiological characterization. Continuous light application activating either GtACR2 or Chrimson resulted in cardiomyocyte depolarization and thus stopped EHT contractility. In contrast, short light pulses, with red as well as with blue light, triggered action potentials (AP) up to a rate of 240 bpm. In summary, we demonstrate that cation, as well as anion channelrhodopsins, can be used to activate stem cell-derived cardiomyocytes with pulsed photostimulation but also to silence cardiac contractility with prolonged photostimulation.


Asunto(s)
Miocitos Cardíacos , Optogenética , Humanos , Optogenética/métodos , Channelrhodopsins/genética , Miocitos Cardíacos/metabolismo , Aniones/metabolismo , Cationes
3.
Stem Cell Reports ; 19(8): 1053-1060, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39059379

RESUMEN

Transplantation of pluripotent stem cell-derived cardiomyocytes is a novel promising cell-based therapeutic approach for patients with heart failure. However, engraftment arrhythmias are a predictable life-threatening complication and represent a major hurdle for clinical translation. Thus, we wanted to experimentally study whether impulse generation by transplanted cardiomyocytes can propagate to the host myocardium and overdrive the recipient rhythm. We transplanted human induced pluripotent stem cell-derived cardiomyocytes expressing the optogenetic actuator Bidirectional Pair of Opsins for Light-induced Excitation and Silencing (BiPOLES) in a guinea pig injury model. Eight weeks after transplantation ex vivo, Langendorff perfusion was used to assess electrical coupling. Pulsed photostimulation was applied to specifically activate the engrafted cardiomyocytes. Photostimulation resulted in ectopic pacemaking that propagated to the host myocardium, caused non-sustained arrhythmia, and stimulated the recipient heart with higher pacing frequency (4/9 hearts). Our study demonstrates that transplanted cardiomyocytes can (1) electrically couple to the host myocardium and (2) stimulate the recipient heart. Thus, our results provide experimental evidence for an important aspect of engraftment-induced arrhythmia induction and thereby support the current hypothesis that cardiomyocyte automaticity can serve as a trigger for ventricular arrhythmias.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Animales , Cobayas , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Arritmias Cardíacas/terapia , Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Optogenética/métodos , Corazón/fisiología , Diferenciación Celular , Miocardio/metabolismo , Miocardio/citología , Trasplante de Células Madre/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA