Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Biol ; 224(19)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34431494

RESUMEN

Animals across species compete for limited resources. Whereas in some species competition behavior is solely based on the individual's own abilities, other species assess their opponents to facilitate these interactions. Using cues and communication signals, contestants gather information about their opponent, adjust their behavior accordingly, and can thereby avoid high costs of escalating fights. We tracked electrocommunication signals known as 'rises' and agonistic behaviors of the gymnotiform electric fish Apteronotus leptorhynchus in staged competition experiments. A larger body size relative to the opponent was the sole significant predictor for winners. Sex and the frequency of the continuously emitted electric field only mildly influenced competition outcome. In males, correlations of body size and winning were stronger than in females and, especially when losing against females, communication and agonistic interactions were enhanced, suggesting that males are more motivated to compete. Fish that lost competitions emitted the majority of rises, but their quantity depended on the competitors' relative size and sex. The emission of a rise could be costly since it provoked ritualized biting or chase behaviors by the other fish. Despite winners being accurately predictable based on the number of rises after the initial 25 min, losers continued to emit rises. The number of rises emitted by losers and the duration of chase behaviors depended in similar ways on physical attributes of contestants. Detailed evaluation of these correlations suggests that A. leptorhynchus adjusts its competition behavior according to mutual assessment, where rises could signal a loser's motivation to continue assessment through ritualized fighting.


Asunto(s)
Pez Eléctrico , Gymnotiformes , Comunicación Animal , Animales , Órgano Eléctrico , Femenino , Masculino , Motivación
2.
Front Integr Neurosci ; 16: 965211, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118117

RESUMEN

Recent technological advances greatly improved the possibility to study freely behaving animals in natural conditions. However, many systems still rely on animal-mounted devices, which can already bias behavioral observations. Alternatively, animal behaviors can be detected and tracked in recordings of stationary sensors, e.g., video cameras. While these approaches circumvent the influence of animal-mounted devices, identification of individuals is much more challenging. We take advantage of the individual-specific electric fields electric fish generate by discharging their electric organ (EOD) to record and track their movement and communication behaviors without interfering with the animals themselves. EODs of complete groups of fish can be recorded with electrode arrays submerged in the water and then be tracked for individual fish. Here, we present an improved algorithm for tracking electric signals of wave-type electric fish. Our algorithm benefits from combining and refining previous approaches of tracking individual specific EOD frequencies and spatial electric field properties. In this process, the similarity of signal pairs in extended data windows determines their tracking order, making the algorithm more robust against detection losses and intersections. We quantify the performance of the algorithm and show its application for a data set recorded with an array of 64 electrodes distributed over a 12 m2 section of a stream in the Llanos, Colombia, where we managed, for the first time, to track Apteronotus leptorhynchus over many days. These technological advances make electric fish a unique model system for a detailed analysis of social and communication behaviors, with strong implications for our research on sensory coding.

3.
Front Integr Neurosci ; 13: 21, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31333424

RESUMEN

Electrocommunication and -localization behaviors of weakly electric fish have been studied extensively in the lab, mostly by means of short-term observations on constrained fish. Far less is known about their behaviors in more natural-like settings, where fish are less constrained in space and time. We tracked individual fish in a population of fourteen brown ghost knifefish (Apteronotus leptorhynchus) housed in a large 2 m3 indoor tank based on their electric organ discharges (EOD). The tank contained four different natural-like microhabitats (gravel, plants, isolated stones, stacked stones). In particular during the day individual fish showed preferences for specific habitats which provided appropriate shelter. Male fish with higher EOD frequencies spent more time in their preferred habitat during the day, moved more often between habitats during the night, and less often during the day in comparison to low-frequency males. Our data thus revealed a link between dominance indicated by higher EOD frequency, territoriality, and a more explorative personality in male A. leptorhynchus. In females, movement activity during both day and night correlated positively with EOD frequency. In the night, fish of either sex moved to another habitat after about 6 s on average. During the day, the average transition time was also very short at about 20 s. However, these activity phases were interrupted by phases of inactivity that lasted on average about 20 min during the day, but only 3 min in the night. The individual preference for daytime retreat sites did not reflect the frequent explorative movements at night.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA