Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 13: 550, 2012 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-23062031

RESUMEN

BACKGROUND: Small non-coding RNAs (sRNAs) have attracted attention as a new class of gene regulators in both eukaryotes and bacteria. Genome-wide screening methods have been successfully applied in Gram-negative bacteria to identify sRNA regulators. Many sRNAs are well characterized, including their target mRNAs and mode of action. In comparison, little is known about sRNAs in Gram-positive pathogens. In this study, we identified novel sRNAs in the exclusively human pathogen Streptococcus pyogenes M49 (Group A Streptococcus, GAS M49), employing a whole genome intergenic tiling array approach. GAS is an important pathogen that causes diseases ranging from mild superficial infections of the skin and mucous membranes of the naso-pharynx, to severe toxic and invasive diseases. RESULTS: We identified 55 putative sRNAs in GAS M49 that were expressed during growth. Of these, 42 were novel. Some of the newly-identified sRNAs belonged to one of the common non-coding RNA families described in the Rfam database. Comparison of the results of our screen with the outcome of two recently published bioinformatics tools showed a low level of overlap between putative sRNA genes. Previously, 40 potential sRNAs have been reported to be expressed in a GAS M1T1 serotype, as detected by a whole genome intergenic tiling array approach. Our screen detected 12 putative sRNA genes that were expressed in both strains. Twenty sRNA candidates appeared to be regulated in a medium-dependent fashion, while eight sRNA genes were regulated throughout growth in chemically defined medium. Expression of candidate genes was verified by reverse transcriptase-qPCR. For a subset of sRNAs, the transcriptional start was determined by 5' rapid amplification of cDNA ends-PCR (RACE-PCR) analysis. CONCLUSIONS: In accord with the results of previous studies, we found little overlap between different screening methods, which underlines the fact that a comprehensive analysis of sRNAs expressed by a given organism requires the complementary use of different methods and the investigation of several environmental conditions. Despite a high conservation of sRNA genes within streptococci, the expression of sRNAs appears to be strain specific.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/genética , Genoma Bacteriano/genética , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Streptococcus pyogenes/genética , Secuencia de Bases , Northern Blotting , Biología Computacional , ADN Intergénico/genética , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia , Especificidad de la Especie , Streptococcus pyogenes/crecimiento & desarrollo
2.
BMC Bioinformatics ; 11: 491, 2010 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-20920260

RESUMEN

BACKGROUND: Non-coding RNAs gain more attention as their diverse roles in many cellular processes are discovered. At the same time, the need for efficient computational prediction of ncRNAs increases with the pace of sequencing technology. Existing tools are based on various approaches and techniques, but none of them provides a reliable ncRNA detector yet. Consequently, a natural approach is to combine existing tools. Due to a lack of standard input and output formats combination and comparison of existing tools is difficult. Also, for genomic scans they often need to be incorporated in detection workflows using custom scripts, which decreases transparency and reproducibility. RESULTS: We developed a Java-based framework to integrate existing tools and methods for ncRNA detection. This framework enables users to construct transparent detection workflows and to combine and compare different methods efficiently. We demonstrate the effectiveness of combining detection methods in case studies with the small genomes of Escherichia coli, Listeria monocytogenes and Streptococcus pyogenes. With the combined method, we gained 10% to 20% precision for sensitivities from 30% to 80%. Further, we investigated Streptococcus pyogenes for novel ncRNAs. Using multiple methods--integrated by our framework--we determined four highly probable candidates. We verified all four candidates experimentally using RT-PCR. CONCLUSIONS: We have created an extensible framework for practical, transparent and reproducible combination and comparison of ncRNA detection methods. We have proven the effectiveness of this approach in tests and by guiding experiments to find new ncRNAs. The software is freely available under the GNU General Public License (GPL), version 3 at http://www.sbi.uni-rostock.de/moses along with source code, screen shots, examples and tutorial material.


Asunto(s)
ARN no Traducido/química , Análisis de Secuencia de ARN/métodos , Bases de Datos Genéticas , Genoma Bacteriano , ARN Bacteriano/química , Reproducibilidad de los Resultados , Alineación de Secuencia , Programas Informáticos
3.
Genome Med ; 1(9): 88, 2009 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-19754960

RESUMEN

Systems biology has matured considerably as a discipline over the last decade, yet some of the key challenges separating current research efforts in systems biology and clinically useful results are only now becoming apparent. As these gaps are better defined, the new discipline of systems medicine is emerging as a translational extension of systems biology. How is systems medicine defined? What are relevant ontologies for systems medicine? What are the key theoretic and methodologic challenges facing computational disease modeling? How are inaccurate and incomplete data, and uncertain biologic knowledge best synthesized in useful computational models? Does network analysis provide clinically useful insight? We discuss the outstanding difficulties in translating a rapidly growing body of data into knowledge usable at the bedside. Although core-specific challenges are best met by specialized groups, it appears fundamental that such efforts should be guided by a roadmap for systems medicine drafted by a coalition of scientists from the clinical, experimental, computational, and theoretic domains.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA