RESUMEN
Hematopoietic stem cells (HSC) from cord blood can be applied as an alternative to bone marrow in transplantation to treat hematological diseases. Umbilical cord blood (UCB) consists of cycling and non-cycling CD34+/CD45low cells needed for long-term and short-term engraftment. After sorting and subsequent in vitro culture, quiescent HSCs enter the cell cycle. This enables the analysis of HSCs in 2 different cell cycle stages and the comparison of their responses to different genotoxic noxae. To analyze different mechanisms of DNA damage induction in cells, 2 different genotoxins were compared: etoposide, a topoisomerase II inhibitor that targets mitosis in the S/G2-phase of the cell cycle and the alkylating nitrosamine N-Nitroso-N-methylurea (MNU), which leads to the formation of methyl DNA adducts resulting in DNA double breaks during DNA replication and persistent mutations. Cycling cells recovered after treatment even with higher concentrations of etoposide (1.5µM/ 5µM/10µM), while sorted cells treated with MNU (0.1mM/0.3mM/0.5mM/1mM/3Mm/ 5mM) recovered after treatment with the lower MNU concentrations whereas high MNU concentrations resulted in apoptosis activation. Quiescent cells were not affected by etoposide treatment showing no damage upon entry into the cell cycle. Treatment with MNU, similarly to the cycling cells, resulted in a dose-dependent cell death. In conclusion, we found that depending on the genotoxic trigger and the cycling status, CD34+cells have distinct responses to DNA damage. Cycling cells employ both DDR and apoptosis mechanisms to prevent damage accumulation. Quiescent cells predominantly undergo apoptosis upon damage, but their cell cycle status protects them from certain genotoxic insults.
Asunto(s)
Sangre Fetal , Células Madre Hematopoyéticas , Sangre Fetal/metabolismo , Etopósido/farmacología , Etopósido/metabolismo , Células Madre Hematopoyéticas/metabolismo , Daño del ADN , Reparación del ADN , Noxas/metabolismoRESUMEN
The Fanconi anemia (FA) and homologous recombination (HR) pathways, which partially overlap and include RAD51 and its paralogs, are key for the repair of different types of DNA damage, such as DNA interstrand crosslinks. First, to broadly assess the impact of microRNA-mediated regulation, we examined microRNA expression profiles in five isogenic fibroblast cell pairs, either deficient in DNA repair due to germline mutations in FANCA, FANCB, FANCC, FANCI or BRIP1/FANCJ or proficient due to correction with retroviral vectors. In each pair, we observed lower abundance of specific microRNAs in the FA-deficient cells. From the list of microRNAs, we experimentally confirmed the effects of miR-141-3p and miR-369-3p targeting RAD51B and miR-15a-5p, miR-494-3p as well as miR-544a targeting RAD51D. However, by western blotting, only RAD51D protein was reduced by a mixture of its regulating microRNAs. Gene ontology analyses and identification of additional FA/HR factors as targets of miR-15a-5p, miR-494-3p and miR-544a strongly suggested the widespread influence of these microRNAs on HR. Interestingly, only miR-494-3p directly reduced RAD51 foci formation, while a mixture of miR-15a-5p, miR-494-3p and miR-544a strongly reduced HR activity in green fluorescent protein (GFP) repair assays. In summary, by successfully employing this novel loss- and gain-of-function strategy, we have identified new microRNAs strongly inhibiting HR in mammalian cells. Understanding and modulating such miRNA regulation of DNA repair genes/pathways might help to overcome the reduced repair capacity of FA patients with biallelic hypomorphic mutations or help to engineer synthetic lethality strategies for patients with mutations in cancer-associated FA/HR genes.
Asunto(s)
Proteínas de Unión al ADN , Anemia de Fanconi , MicroARNs , Humanos , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Anemia de Fanconi/genética , Recombinación Homóloga/genética , MicroARNs/genética , MicroARNs/metabolismoRESUMEN
BACKGROUND: Cladribine is a synthetic purine analogue that interferes with DNA synthesis and repair next to disrupting cellular proliferation in actively dividing lymphocytes. The compound is approved for the treatment of multiple sclerosis (MS). Cladribine can cross the blood-brain barrier, suggesting a potential effect on central nervous system (CNS) resident cells. Here, we explored compartment-specific immunosuppressive as well as potential direct neuroprotective effects of oral cladribine treatment in experimental autoimmune encephalomyelitis (EAE) mice. METHODS: In the current study, we compare immune cell frequencies and phenotypes in the periphery and CNS of EAE mice with distinct grey and white matter lesions (combined active and focal EAE) either orally treated with cladribine or vehicle, using flow cytometry. To evaluate potential direct neuroprotective effects, we assessed the integrity of the primary auditory cortex neuronal network by studying neuronal activity and spontaneous synaptic activity with electrophysiological techniques ex vivo. RESULTS: Oral cladribine treatment significantly attenuated clinical deficits in EAE mice. Ex vivo flow cytometry showed that cladribine administration led to peripheral immune cell depletion in a compartment-specific manner and reduced immune cell infiltration into the CNS. Histological evaluations revealed no significant differences for inflammatory lesion load following cladribine treatment compared to vehicle control. Single cell electrophysiology in acute brain slices was performed and showed an impact of cladribine treatment on intrinsic cellular firing patterns and spontaneous synaptic transmission in neurons of the primary auditory cortex. Here, cladribine administration in vivo partially restored cortical neuronal network function, reducing action potential firing. Both, the effect on immune cells and neuronal activity were transient. CONCLUSIONS: Our results indicate that cladribine exerts a neuroprotective effect after crossing the blood-brain barrier independently of its peripheral immunosuppressant action.
Asunto(s)
Encefalomielitis Autoinmune Experimental , Encefalomielitis , Fármacos Neuroprotectores , Ratones , Animales , Encefalomielitis Autoinmune Experimental/patología , Cladribina/uso terapéutico , Fármacos Neuroprotectores/farmacología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Inmunosupresores/uso terapéuticoRESUMEN
Inflammation after injury of the central nervous system (CNS) is increasingly viewed as a therapeutic target. However, comparative studies in different CNS compartments are sparse. To date only few studies based on immunohistochemical data and all referring to mechanical injury have directly compared inflammation in different CNS compartments. These studies revealed that inflammation is more pronounced in spinal cord than in brain. Therefore, it is unclear whether concepts and treatments established in the cerebral cortex can be transferred to spinal cord lesions and vice versa or whether immunological treatments must be adapted to different CNS compartments. By use of transcriptomic and flow cytometry analysis of equally sized photothrombotically induced lesions in the cerebral cortex and the spinal cord, we could document an overall comparable inflammatory reaction and repair activity in brain and spinal cord between day 1 and day 7 after ischemia. However, remyelination was increased after cerebral versus spinal cord ischemia which is in line with increased remyelination in gray matter in previous analyses and was accompanied by microglia dominated inflammation opposed to monocytes/macrophages dominated inflammation after spinal cord ischemia. Interestingly remyelination could be reduced by microglia and not hematogenous macrophage depletion. Our results show that despite different cellular composition of the postischemic infiltrate the inflammatory response in cerebral cortex and spinal cord are comparable between day 1 and day 7. A striking difference was higher remyelination capacity in the cerebral cortex, which seems to be supported by microglia dominance.
Asunto(s)
Remielinización , Traumatismos de la Médula Espinal , Isquemia de la Médula Espinal , Humanos , Macrófagos/patología , Microglía/patología , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología , Isquemia de la Médula Espinal/patologíaRESUMEN
To determine the role of BRAFV600E mutation and MAPK signaling as well as the effects of BRAF and MEK directed therapy in gastroenteropancreatic neuroendocrine neoplasia (GEP-NEN), with a focus on highly aggressive gastroenteropancreatic neuroendocrine carcinoma (GEP-NEC). Using Sanger sequencing of BRAF exon 15 we determined the frequency of BRAFV600E mutations in 71 primary GEP-NENs. MEK phosphorylation was examined by immunohistochemistry in corresponding tissue samples. To evaluate the biological relevance of BRAFV600E mutation and MAPK signaling in GEP-NECs, effects of a pharmacological BRAF and MEK inhibition were analyzed in NEC cell lines both in vitro and in vivo. BRAFV600E mutation was detected in 9.9% of all GEP-NENs. Interestingly, only NECs of the colon harbored BRAFV600E mutations, leading to a mutation frequency of 46.7% in this subgroup of patients. In addition, a BRAFV600E mutation was significantly associated with high levels of MEK phosphorylation (pMEK) and advanced tumor stages. Pharmacological inhibition of BRAF and MEK abrogated NEC cell growth, inducing G1 cell cycle arrest and apoptosis only in BRAFV600E mutated cells. BRAF inhibitor dabrafenib and MEK inhibitor trametinib prevented growth of BRAFV600E positive NEC xenografts. High frequencies of BRAFV600E mutation and elevated expression levels of pMEK were detected in biologically aggressive and highly proliferative colorectal NECs. We provide evidence that targeting BRAF oncogene may represent a therapeutic strategy for patients with BRAF mutant colorectal NECs.
Asunto(s)
Antineoplásicos/farmacología , Carcinoma Neuroendocrino/genética , Neoplasias Colorrectales/genética , Neoplasias Intestinales/genética , Tumores Neuroendocrinos/genética , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Gástricas/genética , Anciano , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinoma Neuroendocrino/tratamiento farmacológico , Carcinoma Neuroendocrino/mortalidad , Carcinoma Neuroendocrino/patología , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/patología , Exones/genética , Femenino , Estudios de Seguimiento , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Humanos , Imidazoles/farmacología , Imidazoles/uso terapéutico , Neoplasias Intestinales/tratamiento farmacológico , Neoplasias Intestinales/mortalidad , Neoplasias Intestinales/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Ratones Endogámicos NOD , Persona de Mediana Edad , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mutación , Tumores Neuroendocrinos/tratamiento farmacológico , Tumores Neuroendocrinos/mortalidad , Tumores Neuroendocrinos/patología , Oximas/farmacología , Oximas/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Fosforilación/genética , Piridonas/farmacología , Piridonas/uso terapéutico , Pirimidinonas/farmacología , Pirimidinonas/uso terapéutico , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/patología , Análisis de Supervivencia , Análisis de Matrices Tisulares , Vemurafenib/farmacologíaRESUMEN
Among various nanoparticles tested for pharmacological applications over the recent years, graphene quantum dots (GQDs) seem to be promising candidates for the construction of drug delivery systems due to their superior biophysical and biochemical properties. The subcellular fate of incorporated nanomaterial is decisive for transporting pharmaceuticals into target cells. Therefore a detailed characterization of the uptake of GQDs into different breast cancer models was performed. The demonstrated accumulation inside the endolysosomal system might be the reason for the particles' low toxicity, but has to be overcome for cytosolic or nuclear drug delivery. Furthermore, the penetration of GQDs into precision-cut mammary tumor slices was studied. These constitute a far closer to reality model system than monoclonal cell lines. The constant uptake into the depth of the tissue slices underlines the systems' potential for drug delivery into solid tumors.
Asunto(s)
Neoplasias de la Mama/metabolismo , Grafito/metabolismo , Puntos Cuánticos/metabolismo , Neoplasias de la Mama/patología , Células Epiteliales/metabolismo , Grafito/química , Humanos , Nanoestructuras/química , Tamaño de la Partícula , Puntos Cuánticos/química , Fracciones Subcelulares/metabolismo , Técnicas de Cultivo de Tejidos , Células Tumorales CultivadasRESUMEN
BACKGROUND: Medullary thyroid carcinoma (MTC) is a rare and challenging endocrine malignancy. Once spread, the therapeutic options are limited and the outcome poor. For these patients, the identification of new druggable biological markers is of great importance. Here, we investigated the prognostic and biological role of the C-X-C chemokine receptors type 4 and 7 (CXCR4/7) in MTC. METHODS: Eighty-six MTC and corresponding non-neoplastic thyroid specimens were immunohistochemically stained for CXCR4/7 using tissue microarray technology and expression levels correlated with clinicopathological variables. Medullary thyroid carcinoma cell line TT was treated with recombinant human SDF1α/CXCL12 (rh-SDF1α) and CXCR4 antagonists AMD3100 and WZ811. Changes in cell cycle activation, tumour cell invasiveness as well as changes in mRNA expression levels of genes associated with epithelial-mesenchymal transition (EMT) were investigated. RESULTS: High CXCR4 expression was associated with large tumour size and metastatic disease. CXCR4 antagonists significantly reduced tumour cell invasiveness, while the treatment with rh-SDF1α stimulated invasive growth, caused cell cycle activation and induced EMT. CONCLUSIONS: The CXCR4/CXCR7/CXCL12 axis plays an important role in MTC. We provide first evidence that the chemokine receptors might serve as potential therapeutic targets in patients with advanced MTC and offer new valuable insight into the underlying molecular machinery of metastatic MTC.
Asunto(s)
Carcinoma Neuroendocrino/metabolismo , Carcinoma Neuroendocrino/patología , Receptores CXCR4/metabolismo , Receptores CXCR/metabolismo , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Aminopiridinas/farmacología , Antígenos CD/genética , Bencilaminas/farmacología , Cadherinas/genética , Carcinoma Neuroendocrino/genética , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Quimiocina CXCL12/farmacología , Niño , Ciclamas , Transición Epitelial-Mesenquimal/genética , Femenino , Factor 9 de Crecimiento de Fibroblastos/genética , Proteínas Ligadas a GPI/genética , Expresión Génica/efectos de los fármacos , Compuestos Heterocíclicos/farmacología , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Invasividad Neoplásica/genética , Metástasis de la Neoplasia , Fenotipo , Pronóstico , Receptores CXCR4/antagonistas & inhibidores , Proteínas Recombinantes/farmacología , Estudios Retrospectivos , Factores de Transcripción de la Familia Snail/genética , Tasa de Supervivencia , Neoplasias de la Tiroides/genética , Análisis de Matrices Tisulares , Carga Tumoral , Vimentina/genética , Adulto JovenRESUMEN
Circulating tumor cells (CTCs) are promising biomarkers for diagnosis and therapy in systemic cancer. However, their infrequent and unreliable detection, especially in nonmetastatic cancer, currently impedes the clinical use of CTCs. Because leukapheresis (LA) targets peripheral blood mononuclear cells, which have a similar density to CTCs, and usually involves processing the whole circulating blood, we tested whether LA could substantially increase CTC detection in operable cancer patients. Therefore, we screened LA products generated from up to 25 L of blood per patient in two independent studies, and found that CTCs can be detected in more than 90% of nonmetastatic breast cancer patients. Interestingly, complete white blood cell sampling enabled determining an upper level for total CTC numbers of about 100,000 cells (median, 7,500 CTCs) per patient and identified a correlation of CTC numbers with anatomic disease spread. We further show that diagnostic leukapheresis can be easily combined with the US Food and Drug Administration-approved CellSearch system for standardized enumeration of CTCs. Direct comparison with 7.5 mL of blood revealed a significantly higher CTC frequency in matched LA samples. Finally, genomic single-cell profiling disclosed highly aberrant CTCs as therapy-escaping variants in breast cancer. In conclusion, LA is a clinically safe method that enabled a reliable detection of CTCs at high frequency even in nonmetastatic cancer patients, and might facilitate the routine clinical use of CTCs as in the sense of a liquid biopsy. Combined with technologies for single-cell molecular genetics or cell biology, it may significantly improve prediction of therapy response and monitoring of early systemic cancer.
Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias de la Mama/diagnóstico , Técnicas y Procedimientos Diagnósticos , Leucaféresis/métodos , Células Neoplásicas Circulantes/patología , Neoplasias de la Mama/sangre , Estudios de Cohortes , Hibridación Genómica Comparativa , Femenino , Alemania , Humanos , Estudios Prospectivos , Estudios Retrospectivos , Estadísticas no ParamétricasRESUMEN
UNLABELLED: Pancreatic cancer is one of the most aggressive malignant tumors, mainly due to an aggressive metastasis spreading. In recent years, circulating tumor cells became associated to tumor metastasis. Little is known about their expression profiles. The aim of this study was to develop a complete workflow making it possible to isolate circulating tumor cells from patients with pancreatic cancer and their genetic characterization. RESULTS: We show that the proposed workflow offers a technical sensitivity and specificity high enough to detect and isolate single tumor cells. Moreover our approach makes feasible to genetically characterize single CTCs. CONCLUSIONS: Our work discloses a complete workflow to detect, count and genetically analyze individual CTCs isolated from blood samples. This method has a central impact on the early detection of metastasis development. The combination of cell quantification and genetic analysis provides the clinicians with a powerful tool not available so far.
Asunto(s)
Células Neoplásicas Circulantes/metabolismo , Neoplasias Pancreáticas/genética , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Separación Celular , Femenino , Citometría de Flujo , Humanos , Masculino , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proyectos PilotoRESUMEN
BACKGROUND: Circulating tumor cells (CTCs) are promising surrogate markers for systemic disease, and their molecular characterization might be relevant to guide more individualized cancer therapies. To enable fast and efficient purification of individual CTCs, we developed a work flow from CellSearch(TM) cartridges enabling high-resolution genomic profiling on the single-cell level. METHODS: Single CTCs were sorted from 40 CellSearch samples from patients with metastatic breast cancer using a MoFlo XDP cell sorter. Genomes of sorted single cells were amplified using an adapter-linker PCR. Amplification products were analyzed by array-based comparative genomic hybridization, a gene-specific quantitative PCR (qPCR) assay for cyclin D1 (CCND1) locus amplification, and genomic sequencing to screen for mutations in exons 1, 9, and 20 of the phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) gene and exons 5, 7, and 8 of the tumor protein p53 (TP53) gene. RESULTS: One common flow-sorting protocol was appropriate for 90% of the analyzed CellSearch cartridges, and the detected CTC numbers correlated positively with those originally detected with the CellSearch system (R(2) = 0.9257). Whole genome amplification was successful in 72.9% of the sorted single CTCs. Over 95% of the cells displayed chromosomal aberrations typical for metastatic breast cancers, and amplifications at the CCND1 locus were validated by qPCR. Aberrant CTCs from 2 patients harbored mutations in exon 20 of the PIK3CA gene. CONCLUSIONS: This work flow enabled effective CTC isolation and provided insights into genomic alterations of CTCs in metastatic breast cancer. This approach might facilitate further molecular characterization of rare CTCs to increase understanding of their biology and as a basis for their molecular screening in the clinical setting.
Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/sangre , Hibridación Genómica Comparativa/métodos , Células Neoplásicas Circulantes/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proteína p53 Supresora de Tumor/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Fosfatidilinositol 3-Quinasa Clase I , Ciclina D1/genética , Variaciones en el Número de Copia de ADN , Exones , Femenino , Citometría de Flujo , Humanos , Antígenos Comunes de Leucocito/genética , Mutación , Metástasis de la Neoplasia , Células Neoplásicas Circulantes/patología , Ficocianina/genética , Ficoeritrina/genética , Análisis de la Célula IndividualRESUMEN
[This corrects the article DOI: 10.3389/fimmu.2021.797432.].
RESUMEN
The tumor microenvironment (TM), consisting of the extracellular matrix (ECM), fibroblasts, endothelial cells, and immune cells, might affect tumor invasiveness and the outcome of standard chemotherapy. This study investigated the cross talk between germ cell tumors (GCT) and surrounding TM cells (macrophages, T-lymphocytes, endothelial cells, and fibroblasts) at the transcriptome and secretome level. Using high-throughput approaches of three-dimensional (3D) co-cultured cellular aggregates, this study offers newly identified pathways to be studied with regard to sensitivity toward cisplatin-based chemotherapy or tumor invasiveness as a consequence of the cross talk between tumor cells and TM components. Mass-spectrometry-based secretome analyses revealed that TM cells secreted factors involved in ECM organization, cell adhesion, angiogenesis, and regulation of insulin-like growth factor (IGF) transport. To evaluate direct cell-cell contacts, green fluorescent protein (GFP)-expressing GCT cells and mCherry-expressing TM cells were co-cultured in 3D. Afterward, cell populations were separated by flow cytometry and analyzed by RNA sequencing. Correlating the secretome with transcriptome data indicated molecular processes such as cell adhesion and components of the ECM being enriched in most cell populations. Re-analyses of secretome data with regard to lysine- and proline-hydroxylated peptides revealed a gain in proteins, such as collagens and fibronectin. Cultivation of GCT cells on collagen I/IV- or fibronectin-coated plates significantly elevated adhesive and migratory capacity, while decreasing cisplatin sensitivity of GCT cells. Correspondingly, cisplatin sensitivity was significantly reduced in GCT cells under the influence of conditioned medium from fibroblasts and endothelial cells. This study sheds light on the cross talk between GCT cells and their circumjacent TM, which results in deposition of the ECM and eventually promotes a pro-tumorigenic environment through enhanced migratory and adhesive capacity, as well as decreased cisplatin sensitivity. Hence, our observations indicate that targeting the ECM and its cellular components might be a novel therapeutic option in combination with cisplatin-based chemotherapy for GCT patients.
Asunto(s)
Neoplasias de Células Germinales y Embrionarias , Secretoma , Transcriptoma , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Humanos , Invasividad Neoplásica , Neoplasias de Células Germinales y Embrionarias/tratamiento farmacológico , Transcriptoma/genética , Microambiente TumoralRESUMEN
Innate lymphoid cells (ILCs) and in particular ILC3s have been described to be vital for mucosal barrier functions and homeostasis within the gastrointestinal (GI) tract. Importantly, IL-22-secreting ILC3 have been implicated in the control of inflammatory bowel disease (IBD) and were shown to reduce the incidence of graft-versus-host disease (GvHD) as well as the risk of transplant rejection. Unfortunately, IL-22-secreting ILC3 are primarily located in mucosal tissues and are not found within the circulation, making access to them in humans challenging. On this account, there is a growing desire for clinically applicable protocols for in vitro generation of effector ILC3. Here, we present an approach for faithful generation of functionally competent human ILC3s from cord blood-derived CD34+ hematopoietic progenitors on layers of human mesenchymal stem cells (MSCs) generated in good manufacturing practice (GMP) quality. The in vitro-generated ILC3s phenotypically, functionally, and transcriptionally resemble bona fide tissue ILC3 with high expression of the transcription factors (TF) RorγT, AHR, and ID2, as well as the surface receptors CD117, CD56, and NKp44. Importantly, the majority of ILC3 belonged to the desired effector subtype with high IL-22 and low IL-17 production. The protocol thus combines the advantages of avoiding xenogeneic components, which were necessary in previous protocols, with a high propensity for generation of IL-22-producing ILC3. The present approach is suitable for the generation of large amounts of ILC3 in an all-human system, which could facilitate development of clinical strategies for ILC3-based therapy in inflammatory diseases and cancer.
Asunto(s)
Tracto Gastrointestinal/fisiología , Trasplante de Células Madre Hematopoyéticas , Interleucinas/metabolismo , Linfocitos/inmunología , Células Madre Mesenquimatosas/fisiología , Antígenos CD34/metabolismo , Técnicas de Cultivo de Célula , Células Cultivadas , Hematopoyesis , Humanos , Inmunidad Innata , Interleucina-17/metabolismo , Transfusión de Linfocitos , Nicho de Células Madre , Interleucina-22RESUMEN
Innate lymphoid cells (ILCs), comprising ILC1, 2, and 3 subpopulations, play unique roles in maintaining microbiome homeostasis, mucosal tissue integrity, and control of inflammation. So far, their characterization is dominantly based on tissue-resident ILCs, whereas little information is available on circulating ILCs, in particular in newborns. In order to get a deeper understanding of neonatal innate immunity, we analyzed the transcriptomes and effector functions of cord blood (CB) ILCs. By RNAseq analysis, all ILC subsets could be clearly distinguished from each other. CB-derived ILCs were generally closer related to neonatal T than natural killer (NK) cells and several factors shared by all three ILC subsets such as CD28, CCR4, and SLAMF1 are commonly expressed by T cells but lacking in NK cells. Notably, CB ILCs exhibited a unique signature of DNA binding inhibitor (ID) transcription factors (TF) with high ID3 and low ID2 expression distinct from PB- or tonsil-derived ILCs. In vitro stimulation of sorted CB ILCs revealed distinct differences to tissue-resident ILCs in that ILC1-like and ILC3-like cells were nonresponsive to specific cytokine stimulation, indicating functional immaturity. However, CB ILC3-like cells expressed toll-like receptors TLR1 and TLR2 and upon stimulation with the TLR2:1 ligand Pam3 CSK4 , responded with significantly increased proliferation and cytokine secretion. Together, our data provide novel insights into neonatal ILC biology with a unique TF signature of CB ILCs possibly indicating a common developmental pathway and furthermore a role of CB ILC3-like cells in innate host defense.
Asunto(s)
Inmunidad Innata , Linfocitos , Citocinas , Humanos , Recién Nacido , Células Asesinas Naturales/citología , Linfocitos/citología , Linfocitos T/citología , Receptores Toll-Like , Factores de TranscripciónRESUMEN
Despite their identification several years ago, molecular identity and developmental relation between human ILC1 and NK cells, comprising group 1 ILCs, is still elusive. To unravel their connection, thorough transcriptional, epigenetic, and functional characterization was performed from umbilical cord blood (CB). Unexpectedly, ILC1-like cells lacked Tbet expression and failed to produce IFNγ. Moreover, in contrast to previously described ILC1 subsets they could be efficiently differentiated into NK cells. These were characterized by highly diversified KIR repertoires including late stage NKG2A-KIR+ effector cells that are commonly not generated from previously known NK cell progenitor sources. This property was dependent on stroma cell-derived Notch ligands. The frequency of the novel ILC1-like NK cell progenitor (NKP) significantly declined in CB from early to late gestational age. The study supports a model in which circulating fetal ILC1-like NKPs travel to secondary lymphoid tissues to initiate the formation of diversified NK cell repertoires after birth.
Asunto(s)
Diferenciación Celular , Sangre Fetal/fisiología , Células Asesinas Naturales/metabolismo , Células Madre/metabolismo , Humanos , Cordón Umbilical/irrigación sanguíneaRESUMEN
Here, we tested two magnetic-bead based systems for the enrichment and detection of rare tumor cells in concentrated blood products. For that, the defined numbers of cells from three pancreatic cancer cell lines were spiked in 108 peripheral blood mononuclear cells (PBMNCs) concentrated in 1 mL, mimicking diagnostic leukapheresis (DLA) samples, and samples were processed for circulating tumor cells (CTC) enrichment with the IsoFlux or the KingFisher systems, using different types of magnetic beads from the respective technology providers. Beads were conjugated with different anti-EpCAM and MUC-1 antibodies. Recovered cells were enumerated and documented by fluorescent microscopy. For the IsoFlux system, best performance was obtained with IsoFlux CTC enrichment kit, but these beads compromised the subsequent immunofluorescence staining. For the KingFisher system, best recoveries were obtained using Dynabeads Biotin Binder beads. These beads also allowed one to capture CTCs with different antibodies and the subsequent immunofluorescence staining. KingFisher instrument allowed a single and streamlined protocol for the enrichment and staining of CTCs that further prevented cell loss at the enrichment/staining interface. Both IsoFlux and KingFisher systems allowed the enrichment of cell line cells from the mimicked-DLA samples. However, in this particular experimental setting, the recovery rates obtained with the KingFisher system were globally higher, the system was more cost-effective, and it allowed higher throughput.
RESUMEN
Gene expression studies of peripheral blood cells in inflammatory diseases revealed a large array of new antigens as potential biomarkers useful for diagnosis, prognosis, and therapy stratification. Generally, their validation on the protein level remains mainly restricted to a more hypothesis-driven manner. State-of-the-art multicolor flow cytometry make it attractive to validate candidate genes at the protein and single cell level combined with a detailed immunophenotyping of blood cell subsets. We developed multicolor staining panels including up to 50 different monoclonal antibodies that allowed the assessment of several hundreds of phenotypical parameters in a few milliliters of peripheral blood. Up to 10 different surface antigens were measured simultaneously by the combination of seven different fluorescence colors. In a pilot study blood samples of ankylosing spondylitis (AS) patients were compared with normal donors (ND). A special focus was set on the establishment of suitable bioinformatic strategy for storing and analyzing hundreds of phenotypical parameters obtained from a single blood sample. We could establish a set of multicolor stainings that allowed monitoring of all major leukocyte populations and their corresponding subtypes in peripheral blood. In addition, antigens involved in complement and antibody binding, cell migration, and activation were acquired. The feasibility of our cytometric profiling approach was demonstrated by a successful classification of AS samples with a reduced subset of 80 statistically significant parameters, which are partially involved in antigen presentation and cell migration. Furthermore, these parameters allowed an error-free prediction of independent AS and ND samples originally not included for parameter selection. This study demonstrates a new level of multiparametric analysis in the post-transcriptomic era. The integration of an appropriate bioinformatic solution as presented here by the combination of a custom-made Access database along with cluster- and prediction-analysis tools predestine our approach to promote the human cytome project.
Asunto(s)
Citometría de Flujo/métodos , Espondilitis Anquilosante/metabolismo , Transcripción Genética , Adulto , Análisis por Conglomerados , Eritrocitos/citología , Femenino , Humanos , Inflamación , Masculino , Persona de Mediana Edad , Análisis Multivariante , Fenotipo , Proyectos Piloto , Programas InformáticosRESUMEN
Background: Follicular thyroid carcinoma's (FTC) often benign course is partially due to adjuvant radioactive iodine (RAI) treatment. However, once the tumour has spread and fails to retain RAI, the therapeutic options are limited and the outcome is poor. In this subset of patients, the identification of novel druggable biomarkers appears invaluable. Here, we investigated the stage dependent expression and functional role of the C-X-C chemokine receptors type 4 and 7 (CXCR4/7) in FTC. Methods: CXCR4/7 expression was examined in 44 FTC and corresponding non-neoplastic thyroid specimens as well as 10 FTC distant metastases and 18 follicular adenomas using tissue microarray technology. Expression levels were correlated with clinicopathological variables as well as overall and recurrence free survival. Changes regarding cell cycle activation, tumour cell invasiveness and mRNA expression of genes related to epithelial-mesenchymal transition (EMT) were investigated after treatment with recombinant human SDF1α/CXCL12 (rh-SDF1α) and CXCR4 antagonists AMD3100 and WZ811. Results: CXCR4/7 expression was associated with large tumour size, advanced UICC stage as well as shorter overall and recurrence free survival. CXCR4 was significantly higher expressed in distant metastases than in primary tumour cores. In addition, rh-SDF1α induced invasive growth, cell cycle activation and EMT, while CXCR4 antagonists significantly reduced FTC invasiveness in vitro. Conclusion: Here we provide first evidence of the biological importance of the CXCR4/CXCR7/CXCL12 axis in FTC. Our findings underscore the therapeutic potential of this chemokine receptor family in advanced FTC and offer new valuable insight into the oncogenesis of metastatic FTC.
RESUMEN
Follicular thyroid cancer's (FTC) excellent long-term prognosis is mainly dependent on postoperative radioactive iodine (RAI) treatment. However, once the tumour becomes refractory, the 10-year disease-specific survival rate drops below 10%. The aim of our study was to evaluate the prognostic and biological role of the TRAIL system in FTC and to elucidate the influence of small-molecule-mediated antagonisation of inhibitor of apoptosis proteins (IAPs) on TRAIL sensitivity in vitro Tissue microarrays were constructed from forty-four patients with histologically confirmed FTC. Expression levels of TRAIL and its receptors were correlated with clinicopathological data and overall as well as recurrence-free survival. Non-iodine-retaining FTC cell lines TT2609-bib2 and FTC133 were treated with recombinant human TRAIL alone and in combination with Smac mimetics GDC-0152 or Birinapant. TRAIL-R2/DR5 as well as TRAIL-R3/DcR1 and TRAIL-R4/DcR2 were significantly higher expressed in advanced tumour stages. Both decoy receptors were negatively associated with recurrence-free and overall survival. TRAIL-R4/DcR2 additionally proved to be an independent negative prognostic marker in FTC (HR = 1.446, 95% CI: 1.144-1.826; P < 0.001). In vitro, the co-incubation of Birinapant or GDC-0152 with rh-TRAIL-sensitised FTC cell lines for TRAIL-induced apoptosis, through degradation of cIAP1/2. The TRAIL system plays an important role in FTC tumour biology. Its decoy receptors are associated with poor prognosis as well as earlier recurrence. The specific degradation of cIAP1/2 sensitises FTC cells to TRAIL-induced apoptosis and might highlight a new point of attack in patients with RAI refractory disease.
Asunto(s)
Adenocarcinoma Folicular/metabolismo , Proteínas Inhibidoras de la Apoptosis/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Neoplasias de la Tiroides/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Apoptosis , Línea Celular Tumoral , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) represent a rare and heterogenous tumor entity. Importantly, the highly proliferative subgroup of neuroendocrine carcinoma (GEP-NEC) is characterized by high resistance to conventional chemotherapy. Consequently, there is an urgent need to identify novel therapeutic targets, especially for GEP-NEC. Thus, we focused on Inhibitor of apoptosis protein (IAP) family members survivin and XIAP that orchestrate inhibition of apoptosis, induce resistance against chemotherapeutics and facilitate tumor metastasis. Copy number gains (CNGs) could be detected by microarray comparative genomic hybridization for survivin and XIAP in 60 % and 26.7 % of all GEP-NENs, respectively. Immunohistochemical staining of tissue specimens from 77 consecutive patients with GEP-NEN demonstrated increased survivin protein expression levels in tissue specimens of highly proliferative GEP-NEC or GEP-NEN located in the stomach and colon. In contrast, XIAP overexpression was associated with advanced tumor stages. Knockdown of survivin and XIAP markedly reduced cell proliferation and tumor growth. In vitro, YM155 induced apoptotic cell death accompanied by a reduction in cell proliferation and inhibited GEP-NEC xenograft growth. Taken together, our data provide evidence for a biological relevance of these IAPs in GEP-NEN and support a potential role of survivin as therapeutic target especially in the subgroup of aggressive GEP-NEC.