Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Photochem Photobiol Sci ; 21(9): 1573-1584, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35612713

RESUMEN

Photophysical studies on a BODIPY-fullerene-distyryl BODIPY triad (BDP-C60-DSBDP) and its reference dyads (BODIPY-fullerene; BDP-C60 and distyryl BODIPY-fullerene; DSBDP-C60) are presented herein. In the triad, the association of the two chromophore units linked by a fullerene moiety leads to strong near UV-Visible light absorption from 300 to 700 nm. The triplet-excited state was observed upon visible excitation in all these assemblies, and shown to be localized on the C60 or BODIPY moieties. Using quantitative nanosecond transient absorption, we provide a complete investigation on the lifetime and formation quantum yield of the triplet-excited state. In the BDP-C60 dyad, the triplet excited state of C60 (τ = 7 ± 1 µs) was obtained with a quantum yield of 40 ± 8%. For the DSBDP-C60 dyad and BDP-C60-DSBDP triad, a longer-lived triplet excited state with a lifetime of around 250 ± 20 µs centered on the DSBDP moiety was formed, with respective quantum yields of 37 ± 8 and 20 ± 4%. Triplet-triplet annihilation up-conversion is characterized in the BDP-C60 dyad and the bichromophoric triad in the presence of perylene and DSBDP-monomer as respective annihilators. The photo-induced formation of a long-lived 3DSBDP* in the triad coupled with panchromatic light absorption offers potential applications as a heavy-atom-free organic triplet photosensitizer.


Asunto(s)
Fulerenos , Compuestos de Boro/química , Fulerenos/química , Fármacos Fotosensibilizantes/química
2.
Chempluschem ; 89(6): e202300717, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38406894

RESUMEN

Two BODIPY-C60-peptide assemblies were synthesized by CuAAC reactions of BODIPY-C60 dyads and a helical peptide functionalized with a terminal alkyne group and an azide group, respectively. The helical peptide within these assemblies was functionalized at its other end by a disulfide group, allowing formation of self-assembled monolayers (SAMs) on gold surfaces. Characterizations of these SAMs, as well as those of reference molecules (BODIPY-C60-alkyl, C60-peptide and BODIPY-peptide), were carried out by PM-IRRAS and cyclic voltammetry. BODIPY-C60-peptide SAMs are more densely packed than BODIPY-C60-alkyl and BODIPY-peptide based SAMs. These findings were attributed to the rigid peptide helical conformation along with peptide-peptide and C60-C60 interactions within the monolayers. However, less dense monolayers were obtained with the target assemblies compared to the C60-peptide, as the BODIPY entity likely disrupts organization within the monolayers. Finally, electron transfer kinetics measurements by ultra-fast electrochemistry experiments demonstrated that the helical peptide is a better electron mediator in comparison to alkyl chains. This property was exploited along with those of the BODIPY-C60 dyads in a photo-current generation experiment by converting the resulting excited and/or charge separated states from photo-illumination of the dyad into electrical energy.

3.
J Phys Chem B ; 124(42): 9396-9410, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32897728

RESUMEN

A new donor-acceptor dyad composed of a BODIPY (4,4'-difluoro-4-bora-3a,4a-diaza-s-indacene) donor and a fullerene C60 acceptor has been synthesized and characterized. This derivative has been prepared using a clickable fullerene building block that bears an alkyne moiety and a maleimide unit. The post-functionalization of the maleimide group by a BODIPY thiol leads to a BODIPY-C60 dyad, leaving the alkyne moiety for further functional arrangement. On the basis of the combination of semi-empirical and density functional theory (DFT) calculations, spectroelectrochemical experiments, and steady-state and time-resolved spectroscopies, the photophysical properties of this new BODIPY-C60 dyad were thoroughly studied. By using semi-empirical calculations, the equilibrium of three conformations of the BODIPY-C60 dyad has been deduced, and their molecular orbital structures have been analyzed using DFT calculations. Two short fluorescence lifetimes were attributed to two extended conformers displaying variable donor-acceptor distances (17.5 and 20.0 Å). Additionally, the driving force for photoinduced electron transfer from the singlet excited state of BODIPY to the C60 moiety was calculated using redox potentials determined with electrochemical studies. Spectroelectrochemical measurements were also carried out to investigate the absorption profiles of radicals in the BODIPY-C60 dyad in order to assign the transient species in pump-probe experiments. Under selective photoexcitation of the BODIPY moiety, occurrences of both energy and electron transfers were demonstrated for the dyad by femtosecond and nanosecond transient absorption spectroscopies. Photoinduced electron transfer occurs in the folded conformer, while energy transfer is observed in extended conformers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA