Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 16: 246-256, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-30925452

RESUMEN

Genome editing with the CRISPR/Cas9 technology has emerged recently as a potential strategy for therapy in genetic diseases. For dominant mutations linked to gain-of-function effects, allele-specific correction may be the most suitable approach. In this study, we tested allele-specific inactivation or correction of a heterozygous mutation in the Dynamin 2 (DNM2) gene that causes the autosomal dominant form of centronuclear myopathies (CNMs), a rare muscle disorder belonging to the large group of congenital myopathies. Truncated single-guide RNAs targeting specifically the mutated allele were tested on cells derived from a mouse model and patients. The mutated allele was successfully targeted in patient fibroblasts and Dnm2R465W/+ mouse myoblasts, and clones were obtained with precise genome correction or inactivation. Dnm2R465W/+ myoblasts showed an alteration in transferrin uptake and autophagy. Specific inactivation or correction of the mutated allele rescued these phenotypes. These findings illustrate the potential of CRISPR/Cas9 to target and correct in an allele-specific manner heterozygous point mutations leading to a gain-of-function effect, and to rescue autosomal dominant CNM-related phenotypes. This strategy may be suitable for a large number of diseases caused by germline or somatic mutations resulting in a gain-of-function mechanism.

2.
EMBO Mol Med ; 10(2): 239-253, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29246969

RESUMEN

Rapid advances in allele-specific silencing by RNA interference established a strategy of choice to cure dominant inherited diseases by targeting mutant alleles. We used this strategy for autosomal-dominant centronuclear myopathy (CNM), a rare neuromuscular disorder without available treatment due to heterozygous mutations in the DNM2 gene encoding Dynamin 2. Allele-specific siRNA sequences were developed in order to specifically knock down the human and murine DNM2-mRNA harbouring the p.R465W mutation without affecting the wild-type allele. Functional restoration was achieved in muscle from a knock-in mouse model and in patient-derived fibroblasts, both expressing the most frequently encountered mutation in patients. Restoring either muscle force in a CNM mouse model or DNM2 function in patient-derived cells is an essential breakthrough towards future gene-based therapy for dominant centronuclear myopathy.


Asunto(s)
Dinamina II/genética , Terapia Genética , Miopatías Estructurales Congénitas , ARN Interferente Pequeño/uso terapéutico , Alelos , Animales , Células Cultivadas , Humanos , Ratones , Mutación , Miopatías Estructurales Congénitas/tratamiento farmacológico , Miopatías Estructurales Congénitas/enzimología , Miopatías Estructurales Congénitas/fisiopatología
3.
J Clin Invest ; 127(12): 4477-4487, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29130937

RESUMEN

Regulation of skeletal muscle development and organization is a complex process that is not fully understood. Here, we focused on amphiphysin 2 (BIN1, also known as bridging integrator-1) and dynamin 2 (DNM2), two ubiquitous proteins implicated in membrane remodeling and mutated in centronuclear myopathies (CNMs). We generated Bin1-/- Dnm2+/- mice to decipher the physiological interplay between BIN1 and DNM2. While Bin1-/- mice die perinatally from a skeletal muscle defect, Bin1-/- Dnm2+/- mice survived at least 18 months, and had normal muscle force and intracellular organization of muscle fibers, supporting BIN1 as a negative regulator of DNM2. We next characterized muscle-specific isoforms of BIN1 and DNM2. While BIN1 colocalized with and partially inhibited DNM2 activity during muscle maturation, BIN1 had no effect on the isoform of DNM2 found in adult muscle. Together, these results indicate that BIN1 and DNM2 regulate muscle development and organization, function through a common pathway, and define BIN1 as a negative regulator of DNM2 in vitro and in vivo during muscle maturation. Our data suggest that DNM2 modulation has potential as a therapeutic approach for patients with CNM and BIN1 defects. As BIN1 is implicated in cancers, arrhythmia, and late-onset Alzheimer disease, these findings may trigger research directions and therapeutic development for these common diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Dinamina II/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Dinamina II/genética , Ratones , Ratones Noqueados , Fibras Musculares Esqueléticas/patología , Miopatías Estructurales Congénitas/genética , Miopatías Estructurales Congénitas/metabolismo , Miopatías Estructurales Congénitas/patología , Miopatías Estructurales Congénitas/terapia , Proteínas del Tejido Nervioso/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Supresoras de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA