Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
PLoS Biol ; 21(12): e3002431, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38064533

RESUMEN

Bacteriophages encode anti-CRISPR (Acr) proteins that inactivate CRISPR-Cas bacterial immune systems, allowing successful invasion, replication, and prophage integration. Acr proteins inhibit CRISPR-Cas systems using a wide variety of mechanisms. AcrIIA1 is encoded by numerous phages and plasmids, binds specifically to the Cas9 HNH domain, and was the first Acr discovered to inhibit SpyCas9. Here, we report the observation of AcrIIA1-induced degradation of SpyCas9 and SauCas9 in human cell culture, the first example of Acr-induced degradation of CRISPR-Cas nucleases in human cells. AcrIIA1-induced degradation of SpyCas9 is abolished by mutations in AcrIIA1 that break a direct physical interaction between the 2 proteins. Targeted Cas9 protein degradation by AcrIIA1 could modulate Cas9 nuclease activity in human therapies. The small size and specificity of AcrIIA1 could be used in a CRISPR-Cas proteolysis-targeting chimera (PROTAC), providing a tool for developing safe and precise gene editing applications.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Humanos , Sistemas CRISPR-Cas/genética , Bacteriófagos/genética , Proteína 9 Asociada a CRISPR/metabolismo , Edición Génica , Lisogenia
2.
J Biol Chem ; 300(3): 105685, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272227

RESUMEN

The precision of gene editing technology is critical to creating safe and effective therapies for treating human disease. While the programmability of CRISPR-Cas systems has allowed for rapid innovation of new gene editing techniques, the off-target activity of these enzymes has hampered clinical development for novel therapeutics. Here, we report the identification and characterization of a novel CRISPR-Cas12a enzyme from Acinetobacter indicus (AiCas12a). We engineer the nuclease (termed AiEvo2) for increased specificity, protospacer adjacent motif recognition, and efficacy on a variety of human clinical targets. AiEvo2 is highly precise and able to efficiently discriminate between normal and disease-causing alleles in Huntington's patient-derived cells by taking advantage of a single nucleotide polymorphism on the disease-associated allele. AiEvo2 efficiently edits several liver-associated target genes including PCSK9 and TTR when delivered to primary hepatocytes as mRNA encapsulated in a lipid nanoparticle. The enzyme also engineers an effective CD19 chimeric antigen receptor-T-cell therapy from primary human T cells using multiplexed simultaneous editing and chimeric antigen receptor insertion. To further ensure precise editing, we engineered an anti-CRISPR protein to selectively inhibit off-target gene editing while retaining therapeutic on-target editing. The engineered AiEvo2 nuclease coupled with a novel engineered anti-CRISPR protein represents a new way to control the fidelity of editing and improve the safety and efficacy of gene editing therapies.


Asunto(s)
Edición Génica , Receptores Quiméricos de Antígenos , Humanos , Sistemas CRISPR-Cas , Endonucleasas/metabolismo , Edición Génica/métodos , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Células HEK293 , Nucleótidos/metabolismo , Alelos , Nanopartículas
3.
Bioconjug Chem ; 32(4): 746-754, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33689309

RESUMEN

Although peptide motifs represent the majority of cleavable linkers used in clinical-stage antibody-drug conjugates (ADCs), the sequences are often sensitive to cleavage by extracellular enzymes, such as elastase, which leads to systemic release of the cytotoxic payload. This action reduces the therapeutic index by causing off-target toxicities that can be dose-limiting. For example, a common side-effect of ADCs made using peptide-cleavable linkers is myelosuppression, including neutropenia. Only a few reports describe methods for optimizing peptide linkers to maintain efficient and potent tumor payload delivery while enhancing circulating stability. Herein, we address these critical limitations through the development of a tandem-cleavage linker strategy, where two sequential enzymatic cleavage events mediate payload release. We prepared dipeptides that are protected from degradation in the circulation by a sterically encumbering glucuronide moiety. Upon ADC internalization and lysosomal degradation, the monosaccharide is removed and the exposed dipeptide is degraded, which liberates the attached payload inside the target cell. We used CD79b-targeted monomethyl auristatin E (MMAE) conjugates as our model system and compared the stability, efficacy, and tolerability of ADCs made with tandem-cleavage linkers to ADCs made using standard technology with the vedotin linker. The results, where rat studies showed dramatically improved tolerability in the hematopoietic compartment, highlight the role that linker stability plays in efficacy and tolerability and also offer a means of improving an ADC's therapeutic index for improved patient outcomes.


Asunto(s)
Antineoplásicos/toxicidad , Antígenos CD79/toxicidad , Inmunoconjugados/toxicidad , Animales , Antineoplásicos/química , Antígenos CD79/química , Endocitosis , Femenino , Hidrólisis , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratas , Ratas Sprague-Dawley , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Nat Chem Biol ; 15(10): 949-958, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31451760

RESUMEN

Antibody-drug conjugates (ADCs) selectively deliver chemotherapeutic agents to target cells and are important cancer therapeutics. However, the mechanisms by which ADCs are internalized and activated remain unclear. Using CRISPR-Cas9 screens, we uncover many known and novel endolysosomal regulators as modulators of ADC toxicity. We identify and characterize C18ORF8/RMC1 as a regulator of ADC toxicity through its role in endosomal maturation. Through comparative analysis of screens with ADCs bearing different linkers, we show that a subset of late endolysosomal regulators selectively influence toxicity of noncleavable linker ADCs. Surprisingly, we find cleavable valine-citrulline linkers can be processed rapidly after internalization without lysosomal delivery. Lastly, we show that sialic acid depletion enhances ADC lysosomal delivery and killing in diverse cancer cell types, including with FDA (US Food and Drug Administration)-approved trastuzumab emtansine (T-DM1) in Her2-positive breast cancer cells. Together, these results reveal new regulators of endolysosomal trafficking, provide important insights for ADC design and identify candidate combination therapy targets.


Asunto(s)
Sistemas CRISPR-Cas , Estudio de Asociación del Genoma Completo , Inmunoconjugados/toxicidad , Maitansina/análogos & derivados , Ácido N-Acetilneuramínico/farmacología , Trastuzumab/farmacología , Ado-Trastuzumab Emtansina , Antineoplásicos Inmunológicos/farmacología , Proteínas Portadoras , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Lisosomas , Maitansina/farmacología
5.
Bioconjug Chem ; 30(11): 2982-2988, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31671265

RESUMEN

Antibody-drug conjugates (ADCs) are an established modality for the tissue-specific delivery of chemotherapeutics. However, due to the hydrophobic nature of many cytotoxic payloads, challenges remain in developing chemically stable ADCs with high drug loading. In previous studies, payload structure, unique stimuli-responsive chemistries, and PEGylated cross-linkers have been used to decrease ADC hydrophobicity. In this work, we investigate the effect of a new parameter, cross-linker sequence. A support-free synthesis of PEGylated, sequence-defined cross-linkers was developed and applied to the synthesis of three constitutionally isomeric ADCs containing PEG side chains and a monomethyl auristatin E payload. Placement of PEG side chains distally from the payload was found to yield an ADC with altered hydrophilicity, antigen binding, and in vitro potency. This work establishes a versatile method for synthesizing multifunctional cross-linkers and identifies cross-linker sequence as a new handle for modulating the performance of ADCs.


Asunto(s)
Anticuerpos Monoclonales/química , Proliferación Celular , Reactivos de Enlaces Cruzados/química , Interacciones Hidrofóbicas e Hidrofílicas , Inmunoconjugados/química , Inmunoconjugados/farmacología , Oligopéptidos/química , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/inmunología , Células Tumorales Cultivadas
6.
J Am Chem Soc ; 139(29): 9867-9875, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28677396

RESUMEN

Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is a powerful yet accessible means to characterize mechanical properties of biomolecules. Historically, accessibility relies upon the nonspecific adhesion of biomolecules to a surface and a cantilever and, for proteins, the integration of the target protein into a polyprotein. However, this assay results in a low yield of high-quality data, defined as the complete unfolding of the polyprotein. Additionally, nonspecific surface adhesion hinders studies of α-helical proteins, which unfold at low forces and low extensions. Here, we overcame these limitations by merging two developments: (i) a polyprotein with versatile, genetically encoded short peptide tags functionalized via a mechanically robust Hydrazino-Pictet-Spengler ligation and (ii) the efficient site-specific conjugation of biomolecules to PEG-coated surfaces. Heterobifunctional anchoring of this polyprotein construct and DNA via copper-free click chemistry to PEG-coated substrates and a strong but reversible streptavidin-biotin linkage to PEG-coated AFM tips enhanced data quality and throughput. For example, we achieved a 75-fold increase in the yield of high-quality data and repeatedly probed the same individual polyprotein to deduce its dynamic force spectrum in just 2 h. The broader utility of this polyprotein was demonstrated by measuring three diverse target proteins: an α-helical protein (calmodulin), a protein with internal cysteines (rubredoxin), and a computationally designed three-helix bundle (α3D). Indeed, at low loading rates, α3D represents the most mechanically labile protein yet characterized by AFM. Such efficient SMFS studies on a commercial AFM enable the rapid characterization of macromolecular folding over a broader range of proteins and a wider array of experimental conditions (pH, temperature, denaturants). Further, by integrating these enhancements with optical traps, we demonstrate how efficient bioconjugation to otherwise nonstick surfaces can benefit diverse single-molecule studies.


Asunto(s)
Proteínas/química , Concentración de Iones de Hidrógeno , Microscopía de Fuerza Atómica , Conformación Proteica en Hélice alfa , Temperatura
7.
J Biol Chem ; 290(25): 15730-15745, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-25931126

RESUMEN

To further our aim of synthesizing aldehyde-tagged proteins for research and biotechnology applications, we developed methods for recombinant production of aerobic formylglycine-generating enzyme (FGE) in good yield. We then optimized the FGE biocatalytic reaction conditions for conversion of cysteine to formylglycine in aldehyde tags on intact monoclonal antibodies. During the development of these conditions, we discovered that pretreating FGE with copper(II) is required for high turnover rates and yields. After further investigation, we confirmed that both aerobic prokaryotic (Streptomyces coelicolor) and eukaryotic (Homo sapiens) FGEs contain a copper cofactor. The complete kinetic parameters for both forms of FGE are described, along with a proposed mechanism for FGE catalysis that accounts for the copper-dependent activity.


Asunto(s)
Proteínas Bacterianas/química , Coenzimas/química , Cobre/química , Streptomyces coelicolor/enzimología , Sulfatasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Coenzimas/metabolismo , Cobre/metabolismo , Cisteína/química , Cisteína/metabolismo , Humanos , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Streptomyces coelicolor/genética , Sulfatasas/genética , Sulfatasas/metabolismo
8.
BMC Biotechnol ; 16: 23, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26911368

RESUMEN

BACKGROUND: The ability to site-specifically conjugate a protein to a payload of interest (e.g., a fluorophore, small molecule pharmacophore, oligonucleotide, or other protein) has found widespread application in basic research and drug development. For example, antibody-drug conjugates represent a class of biotherapeutics that couple the targeting specificity of an antibody with the chemotherapeutic potency of a small molecule drug. While first generation antibody-drug conjugates (ADCs) used random conjugation approaches, next-generation ADCs are employing site-specific conjugation. A facile way to generate site-specific protein conjugates is via the aldehyde tag technology, where a five amino acid consensus sequence (CXPXR) is genetically encoded into the protein of interest at the desired location. During protein expression, the Cys residue within this consensus sequence can be recognized by ectopically-expressed formylglycine generating enzyme (FGE), which converts the Cys to a formylglycine (fGly) residue. The latter bears an aldehyde functional group that serves as a chemical handle for subsequent conjugation. RESULTS: The yield of Cys conversion to fGly during protein production can be variable and is highly dependent on culture conditions. We set out to achieve consistently high yields by modulating culture conditions to maximize FGE activity within the cell. We recently showed that FGE is a copper-dependent oxidase that binds copper in a stoichiometric fashion and uses it to activate oxygen, driving enzymatic turnover. Building upon that work, here we show that by supplementing cell culture media with copper we can routinely reach high yields of highly converted protein. We demonstrate that cells incorporate copper from the media into FGE, which results in increased specific activity of the enzyme. The amount of copper required is compatible with large scale cell culture, as demonstrated in fed-batch cell cultures with antibody titers of 5 g · L(-1), specific cellular production rates of 75 pg · cell(-1) · d(-1), and fGly conversion yields of 95-98 %. CONCLUSIONS: We describe a process with a high yield of site-specific formylglycine (fGly) generation during monoclonal antibody production in CHO cells. The conversion of Cys to fGly depends upon the activity of FGE, which can be ensured by supplementing the culture media with 50 uM copper(II) sulfate.


Asunto(s)
Aldehídos/química , Anticuerpos/química , Cobre/metabolismo , Medios de Cultivo/química , Glicina/metabolismo , Aldehídos/análisis , Aldehídos/metabolismo , Animales , Anticuerpos/análisis , Anticuerpos/metabolismo , Células CHO , Cricetinae , Cricetulus , Glicina/química
9.
Proc Natl Acad Sci U S A ; 110(1): 46-51, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23237853

RESUMEN

Aldehyde- and ketone-functionalized proteins are appealing substrates for the development of chemically modified biotherapeutics and protein-based materials. Their reactive carbonyl groups are typically conjugated with α-effect nucleophiles, such as substituted hydrazines and alkoxyamines, to generate hydrazones and oximes, respectively. However, the resulting C=N linkages are susceptible to hydrolysis under physiologically relevant conditions, which limits the utility of such conjugates in biological systems. Here we introduce a Pictet-Spengler ligation that is based on the classic Pictet-Spengler reaction of aldehydes and tryptamine nucleophiles. The ligation exploits the bioorthogonal reaction of aldehydes and alkoxyamines to form an intermediate oxyiminium ion; this intermediate undergoes intramolecular C-C bond formation with an indole nucleophile to form an oxacarboline product that is hydrolytically stable. We used the reaction for site-specific chemical modification of glyoxyl- and formylglycine-functionalized proteins, including an aldehyde-tagged variant of the therapeutic monoclonal antibody Herceptin. In conjunction with techniques for site-specific introduction of aldehydes into proteins, the Pictet-Spengler ligation offers a means to generate stable bioconjugates for medical and materials applications.


Asunto(s)
Aldehídos/química , Bioingeniería/métodos , Terapia Biológica/métodos , Cetonas/química , Proteínas/química , Triptaminas/química , Anticuerpos Monoclonales Humanizados/química , Espectroscopía de Resonancia Magnética , Estructura Molecular , Trastuzumab
10.
J Am Chem Soc ; 136(31): 10850-3, 2014 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-25029632

RESUMEN

Expansion of antibody scaffold diversity has the potential to expand the neutralizing capacity of the immune system and to generate enhanced therapeutics and probes. Systematic exploration of scaffold diversity could be facilitated with a modular and chemical scaffold for assembling proteins, such as DNA. However, such efforts require simple, modular, and site-specific methods for coupling antibody fragments or bioactive proteins to nucleic acids. To address this need, we report a modular approach for conjugating synthetic oligonucleotides to proteins with aldehyde tags at either terminus or internal loops. The resulting conjugates are assembled onto DNA-based scaffolds with low nanometer spatial resolution and can bind to live cells. Thus, this modular and site-specific conjugation strategy provides a new tool for exploring the potential of expanded scaffold diversity in immunoglobulin-based probes and therapeutics.


Asunto(s)
Aldehídos/química , ADN/química , Proteínas/química , Sitios de Unión , Línea Celular Tumoral , ADN/metabolismo , Humanos , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/metabolismo , Proteínas/metabolismo , Especificidad por Sustrato
11.
Bioconjug Chem ; 25(7): 1331-41, 2014 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-24924618

RESUMEN

It is becoming increasingly clear that site-specific conjugation offers significant advantages over conventional conjugation chemistries used to make antibody-drug conjugates (ADCs). Site-specific payload placement allows for control over both the drug-to-antibody ratio (DAR) and the conjugation site, both of which play an important role in governing the pharmacokinetics (PK), disposition, and efficacy of the ADC. In addition to the DAR and site of conjugation, linker composition also plays an important role in the properties of an ADC. We have previously reported a novel site-specific conjugation platform comprising linker payloads designed to selectively react with site-specifically engineered aldehyde tags on an antibody backbone. This chemistry results in a stable C-C bond between the antibody and the cytotoxin payload, providing a uniquely stable connection with respect to the other linker chemistries used to generate ADCs. The flexibility and versatility of the aldehyde tag conjugation platform has enabled us to undertake a systematic evaluation of the impact of conjugation site and linker composition on ADC properties. Here, we describe the production and characterization of a panel of ADCs bearing the aldehyde tag at different locations on an IgG1 backbone conjugated using Hydrazino-iso-Pictet-Spengler (HIPS) chemistry. We demonstrate that in a panel of ADCs with aldehyde tags at different locations, the site of conjugation has a dramatic impact on in vivo efficacy and pharmacokinetic behavior in rodents; this advantage translates to an improved safety profile in rats as compared to a conventional lysine conjugate.


Asunto(s)
Aldehídos/química , Anticuerpos Monoclonales/química , Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Receptor ErbB-2/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Neoplasias de la Mama/patología , Femenino , Humanos , Inmunoconjugados/farmacología , Ratones , Ratones SCID , Estructura Molecular , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , Distribución Tisular , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
12.
CRISPR J ; 7(3): 150-155, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38695159

RESUMEN

Treating human genetic conditions in vivo requires efficient delivery of the CRISPR gene editing machinery to the affected cells and organs. The gene editing field has seen clinical advances with ex vivo therapies and with in vivo delivery to the liver using lipid nanoparticle technology. Adeno-associated virus (AAV) serotypes have been discovered and engineered to deliver genetic material to nearly every organ in the body. However, the large size of most CRISPR-Cas systems limits packaging into the viral genome and reduces drug development flexibility and manufacturing efficiency. Here, we demonstrate efficient CRISPR gene editing using a miniature CRISPR-Cas12f system with expanded genome targeting packaged into AAV particles. We identified efficient guides for four therapeutic gene targets and encoded the guides and the Cas12f nuclease into a single AAV. We then demonstrate editing in multiple cell lines, patient fibroblasts, and primary hepatocytes. We then screened the cells for off-target editing, demonstrating the safety of the therapeutics. These results represent an important step in applying CRISPR editing to diverse genetic sequences and organs in the body.


Asunto(s)
Sistemas CRISPR-Cas , Dependovirus , Edición Génica , Edición Génica/métodos , Humanos , Dependovirus/genética , Hepatocitos/metabolismo , Técnicas de Transferencia de Gen , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ARN Guía de Sistemas CRISPR-Cas/genética , Vectores Genéticos , Terapia Genética/métodos , Células HEK293 , Línea Celular , Fibroblastos/metabolismo
13.
Bioconjug Chem ; 24(6): 846-51, 2013 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-23731037

RESUMEN

Aldehyde- and ketone-functionalized biomolecules have found widespread use in biochemical and biotechnological fields. They are typically conjugated with hydrazide or aminooxy nucleophiles under acidic conditions to yield hydrazone or oxime products that are relatively stable, but susceptible to hydrolysis over time. We introduce a new reaction, the hydrazino-Pictet-Spengler (HIPS) ligation, which has two distinct advantages over hydrazone and oxime ligations. First, the HIPS ligation proceeds quickly near neutral pH, allowing for one-step labeling of aldehyde-functionalized proteins under mild conditions. Second, the HIPS ligation product is very stable (>5 days) in human plasma relative to an oxime-linked conjugate (∼1 day), as demonstrated by monitoring protein-fluorophore conjugates by ELISA. Thus, the HIPS ligation exhibits a combination of product stability and speed near neutral pH that is unparalleled by current carbonyl bioconjugation chemistries.


Asunto(s)
Materiales Biocompatibles/química , Hidrazinas/química , Proteínas/química , Aldehídos/química , Humanos , Concentración de Iones de Hidrógeno , Hidrólisis , Cetonas/química , Modelos Moleculares , Estructura Molecular , Oximas/química
14.
CRISPR J ; 6(4): 350-358, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37267210

RESUMEN

Small Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) effectors are key to developing gene editing therapies due to the packaging constraints of viral vectors. While Cas9 and Cas12a CRISPR-Cas effectors have advanced into select clinical applications, their size is prohibitive for efficient delivery of both nuclease and guide RNA in a single viral vector. Type V Cas12f effectors present a solution given their small size. In this study, we describe a novel set of miniature (<490AA) Cas12f nucleases that cleave double-stranded DNA in human cells. We determined their optimal trans-activating RNA empirically through rational modifications, which resulted in an optimal single guide RNA. We show that these nucleases have broad protospacer adjacent motif (PAM) preferences, allowing for expanded genome targeting. The unique characteristics of these novel nucleases add to the diversity of the miniature CRISPR-Cas toolbox while the expanded PAM allows for the editing of genomic locations that could not be accessed with existing Cas12f nucleases.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Sistemas CRISPR-Cas/genética , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , ADN/genética , ARN , Endonucleasas/genética
15.
Proc Natl Acad Sci U S A ; 106(9): 3000-5, 2009 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-19202059

RESUMEN

The properties of therapeutic proteins can be enhanced by chemical modification. Methods for site-specific protein conjugation are critical to such efforts. Here, we demonstrate that recombinant proteins expressed in mammalian cells can be site-specifically modified by using a genetically encoded aldehyde tag. We introduced the peptide sequence recognized by the endoplasmic reticulum (ER)-resident formylglycine generating enzyme (FGE), which can be as short as 6 residues, into heterologous proteins expressed in mammalian cells. Cotranslational modification of the proteins by FGE produced products bearing a unique aldehyde group. Proteins bearing this "aldehyde tag" were chemically modified by selective reaction with hydrazide- or aminooxy-functionalized reagents. We applied the technique to site-specific modification of monoclonal antibodies, the fastest growing class of biopharmaceuticals, as well as membrane-associated and cytosolic proteins expressed in mammalian cells.


Asunto(s)
Aldehídos/química , Proteínas Recombinantes/química , Secuencia de Aminoácidos , Animales , Línea Celular , Membrana Celular/química , Membrana Celular/metabolismo , Cricetinae , Humanos , Modelos Moleculares , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Mol Cancer Ther ; 19(9): 1866-1874, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32651200

RESUMEN

Trastuzumab and the related ADC, ado-trastuzumab emtansine (T-DM1), both target HER2-overexpressing cells. Together, these drugs have treatment indications in both early-stage and metastatic settings for HER2+ breast cancer. T-DM1 retains the antibody functionalities of trastuzumab and adds the potency of a cytotoxic maytansine payload. Interestingly, in the clinic, T-DM1 cannot always replace the use of trastuzumab plus chemotherapy administered together as single agents. We hypothesize that this failure may be due, in part, to the limited systemic exposure achieved by T-DM1 relative to trastuzumab because of toxicity-related dosing constraints on the ADC. We have developed a trastuzumab-based ADC site specifically conjugated to maytansine through a noncleavable linker. This construct, termed CAT-01-106, has a drug-to-antibody ratio (DAR) of 1.8, approximately half the average DAR of T-DM1, which comprises a mixture of antibodies variously conjugated with DARs ranging from 0 to 8. The high DAR species present in T-DM1 contribute to its toxicity and limit its clinical dose. CAT-01-106 showed superior in vivo efficacy compared with T-DM1 at equal payload dosing and was equally or better tolerated compared with T-DM1 at equal payload dosing up to 120 mg/kg in Sprague-Dawley rats and 60 mg/kg in cynomolgus monkeys. CAT-01-106 also showed improved pharmacokinetics in rats relative to T-DM1, with 40% higher ADC exposure levels. Together, the data suggest that CAT-01-106 may be sufficiently tolerable to enable clinical dosing at trastuzumab-equivalent exposure levels, combining the functions of both the antibody and the payload in one drug and potentially improving patient outcomes.


Asunto(s)
Ado-Trastuzumab Emtansina/administración & dosificación , Neoplasias de la Mama/tratamiento farmacológico , Inmunoconjugados/administración & dosificación , Maitansina/química , Trastuzumab/química , Ado-Trastuzumab Emtansina/efectos adversos , Ado-Trastuzumab Emtansina/farmacocinética , Animales , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Inmunoconjugados/efectos adversos , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Macaca fascicularis , Dosis Máxima Tolerada , Ratas , Ratas Sprague-Dawley , Receptor ErbB-2/metabolismo , Trastuzumab/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
17.
J Am Chem Soc ; 131(29): 10263-8, 2009 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-19580278

RESUMEN

Quantifying and controlling the orientation of surface-bound macromolecules is crucial to a wide range of processes in areas as diverse as biology, materials science, and nanotechnology. Methods capable of directing orientation, as well as an understanding of the underlying physical mechanisms are, however, lacking. In this paper, we describe experiments in which the conformations of structurally well-defined polymers anchored to fluid lipid membranes were probed using Fluorescence Interference Contrast Microscopy (FLIC), an optical technique that provides topographic information with few-nanometer precision. The novel rodlike polymers mimic the architecture of mucin glycoproteins and feature a phospholipid tail for membrane incorporation and a fluorescent optical probe for FLIC imaging situated at the opposite termini of the densely glycosylated polymeric backbones. We find that the orientation of the rigid, approximately 30 nm long glycopolymers depends profoundly on the properties of the optical reporter. Molecules terminated with Alexa Fluor 488 projected away from the lipid bilayer by 11 +/- 1 nm, consistent with entropy-dominated sampling of the membrane-proximal space. Molecules terminated with Texas Red lie flat at the membrane (height, 0 +/- 2 nm), implying that interactions between Texas Red and the bilayer dominate the polymers' free energy. These results demonstrate the design of macromolecules with specific orientational preferences, as well as nanometer-scale measurement of their orientation. Importantly, they reveal that seemingly minute changes in molecular structure, in this case fluorophores that comprise only 2% of the total molecular weight, can significantly alter the molecule's presentation to the surrounding environment.


Asunto(s)
Materiales Biomiméticos/química , Membranas Artificiales , Polímeros/química , Materiales Biomiméticos/síntesis química , Glicosilación , Membrana Dobles de Lípidos/química , Conformación Molecular , Estructura Molecular , Mucinas/síntesis química , Mucinas/química , Tamaño de la Partícula , Polímeros/síntesis química , Propiedades de Superficie
18.
Angew Chem Int Ed Engl ; 48(27): 4973-6, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19479916

RESUMEN

Click to view: Glycopolymers can be used to display glycans on microarrays in native-like architectures. The structurally uniform alkyne-terminated mucin mimetic glycopolymers (see picture; TR = fluorophore) were printed on azide-functionalized chips by microcontact printing in the presence of a copper catalyst. The surface-bound glycopolymers bind lectins in a ligand-specific manner.


Asunto(s)
Lectinas/química , Análisis por Micromatrices , Mucinas/química , Polisacáridos/síntesis química , Colorantes Fluorescentes/química , Glicoproteínas/química , Polisacáridos/química , Propiedades de Superficie
19.
Methods Mol Biol ; 2012: 63-81, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31161504

RESUMEN

Use of the formylglycine generating enzyme (FGE)-a copper-dependent posttranslational protein modifier-represents a particularly elegant method taken directly from nature of introducing a unique amino acid into the larger context of a protein. Formylglycine (fGly) is a crucial component of the active site of sulfatases, where it directly participates in the breakdown of sulfate ester substrates. In the context of bioconjugation this aldehyde containing amino acid can be an invaluable reactive handle for the chemical conjugation of molecules. Here we describe a detailed method for generating formylglycine-containing proteins in a mammalian system developed specifically for the production of antibody-drug conjugates (ADCs) but applicable to a wide range of proteins.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Proteínas/química , Coloración y Etiquetado , Secuencia de Aminoácidos , Aminoácidos/química , Secuencia de Consenso , Humanos , Inmunoconjugados/química , Cadenas Pesadas de Inmunoglobulina/química , Cadenas Pesadas de Inmunoglobulina/genética , Procesamiento Proteico-Postraduccional , Relación Estructura-Actividad
20.
Methods Mol Biol ; 2033: 131-147, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31332752

RESUMEN

As a critical feature of the next generation of antibody-drug conjugates (ADCs), site-specific bioconjugation approaches can help to optimize stability, pharmacokinetics, efficacy, and safety as well as improve manufacturing consistency. The SMARTag® technology platform offers a practical and efficient chemoenzymatic solution for site-specific protein modifications. A bioorthogonal aldehyde handle is introduced through the oxidation of a cysteine residue, embedded in a specific peptide sequence (CxPxR), to the aldehyde-bearing formylglycine (fGly). This enzymatic modification is carried out by the formylglycine-generating enzyme (FGE). The broad recognition of this short sequence by FGE within the context of heterologous proteins allows for the introduction of fGly residues at chosen sites in proteins expressed in prokaryotic and eukaryotic systems. The protocol presented here describes the methods for expressing fGly-containing antibodies in eukaryotic cells and subsequent site-specific conjugation with a payload-linker using aldehyde-specific Hydrazino-Iso-Pictet-Spengler (HIPS) chemistry.


Asunto(s)
Inmunoconjugados/genética , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/química , Ingeniería de Proteínas/métodos , Proteínas/química , Aldehídos/química , Glicina/análogos & derivados , Humanos , Inmunoconjugados/química , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Péptidos/química , Péptidos/genética , Procesamiento Proteico-Postraduccional/genética , Proteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA