RESUMEN
We investigate the most appropriate way to optically characterize the materials and predict the spectral responses of metal-dielectric filters in the visible range. Special attention is given to thin silver layers that have a major impact on the filter's spectral transmittance and reflectance. Two characterization approaches are compared, based either on single layers, or on multilayer stacks, in approaching the filter design. The second approach is preferred, because it gives the best way to predict filter characteristics. Meanwhile, it provides a stack model and dispersion relations that can be used for filter design optimization.
RESUMEN
A color image was taken with a CMOS image sensor without any infrared cut-off filter, using red, green and blue metal/dielectric filters arranged in Bayer pattern with 1.75 µm pixel pitch. The three colors were obtained by a thickness variation of only two layers in the 7-layer stack, with a technological process including four photolithography levels. The thickness of the filter stack was only half of the traditional color resists, potentially enabling a reduction of optical crosstalk for smaller pixels. Both color errors and signal to noise ratio derived from optimized spectral responses are expected to be similar to color resists associated with infrared filter.