Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Addict Biol ; 27(5): e13222, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36001422

RESUMEN

Alcohol use and high-risk alcohol drinking behaviours among women are rapidly rising. In rodent models, females typically consume more ethanol (EtOH) than males. Here, we used the four core genotypes (FCG) mouse model to investigate the influence of gonadal hormones and sex chromosome complement on EtOH drinking behaviours. FCG mice were given access to escalating concentrations of EtOH in a two-bottle, 24-h continuous access drinking paradigm to assess consumption and preference. Relapse-like behaviour was measured by assessing escalated intake following repeated cycles of deprivation and re-exposure. Twenty-four-hour EtOH consumption was greater in mice with ovaries (Sry-), relative to those with testes, and in mice with the XX chromosome complement, relative to those with XY sex chromosomes. EtOH preference was higher in XX versus XY mice. For both consumption and preference, the influences of the Sry gene and sex chromosomes were concentration dependent. Escalated intake following repeated cycles of deprivation and re-exposure emerged only in XX mice (vs. XY). Mice with ovaries (Sry- FCG mice and C57BL/6J females) were also found to consume more water than mice with testes. These results demonstrate that aspects of EtOH drinking behaviour may be independently regulated by sex hormones and chromosomes and inform our understanding of the neurobiological mechanisms which contribute to EtOH dependence in male and female mice. Future investigation of the contribution of sex chromosomes to EtOH drinking behaviours is warranted. We used the FCG mouse model to investigate the influence of gonadal hormones and sex chromosome complement on EtOH drinking behaviours, including the alcohol deprivation effect. Escalated intake following repeated cycles of deprivation and re-exposure emerged only in XX mice (vs. XY). These results demonstrate that aspects of EtOH drinking behaviour may be independently regulated by sex hormones and chromosomes.


Asunto(s)
Etanol , Cromosomas Sexuales , Consumo de Bebidas Alcohólicas/genética , Animales , Etanol/farmacología , Femenino , Genotipo , Hormonas Gonadales , Hormonas Esteroides Gonadales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Recurrencia
2.
Learn Mem ; 28(1): 12-16, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33323497

RESUMEN

Early life stress (ELS) experiences can cause changes in cognitive and affective functioning. This study examined the persistent effects of a single traumatic event in infancy on several adult behavioral outcomes in male and female C57BL/6J mice. Mice received 15 footshocks in infancy and were tested for stress-enhanced fear learning, extinction learning, discrimination and reversal learning, and novel object recognition. Infant trauma potentiated fear learning in adulthood and produced resistance to extinction but did not influence other behaviors, suggesting restricted effects of infant trauma on behaviors reliant on cortico-amygdala circuitry.


Asunto(s)
Conducta Animal/fisiología , Extinción Psicológica/fisiología , Miedo/fisiología , Trauma Psicológico/fisiopatología , Adultos Sobrevivientes de Eventos Adversos Infantiles , Factores de Edad , Animales , Aprendizaje Discriminativo/fisiología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Reconocimiento en Psicología/fisiología , Aprendizaje Inverso/fisiología
3.
J Neurochem ; 157(5): 1547-1571, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33704784

RESUMEN

The risk of an aversive consequence occurring as the result of a reward-seeking action can have a profound effect on subsequent behavior. Such aversive events can be described as punishers, as they decrease the probability that the same action will be produced again in the future and increase the exploration of less risky alternatives. Punishment can involve the omission of an expected rewarding event ("negative" punishment) or the addition of an unpleasant event ("positive" punishment). Although many individuals adaptively navigate situations associated with the risk of negative or positive punishment, those suffering from substance use disorders or behavioral addictions tend to be less able to curtail addictive behaviors despite the aversive consequences associated with them. Here, we discuss the psychological processes underpinning reward seeking despite the risk of negative and positive punishment and consider how behavioral assays in animals have been employed to provide insights into the neural mechanisms underlying addictive disorders. We then review the critical contributions of dopamine signaling to punishment learning and risky reward seeking, and address the roles of interconnected ventral striatal, cortical, and amygdala regions to these processes. We conclude by discussing the ample opportunities for future study to clarify critical gaps in the literature, particularly as related to delineating neural contributions to distinct phases of the risky decision-making process.


Asunto(s)
Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Sistema Límbico/fisiología , Mesencéfalo/fisiología , Vías Nerviosas/fisiología , Recompensa , Asunción de Riesgos , Animales , Humanos , Trastornos Relacionados con Sustancias
4.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917517

RESUMEN

Alcohol use disorder remains a substantial social, health, and economic problem and problem drinking levels in women have been increasing in recent years. Understanding whether and how the underlying mechanisms that drive drinking vary by sex is critical and could provide novel, more targeted therapeutic treatments. Here, we examine recent results from our laboratories and others which we believe provide useful insights into similarities and differences in alcohol drinking patterns across the sexes. Findings for binge intake and aversion-resistant, compulsion-like alcohol drinking are considered, since both are likely significant contributors to alcohol problems in humans. We also describe studies regarding mechanisms that may underlie sex differences in maladaptive alcohol drinking, with some focus on the importance of nucleus accumbens (NAcb) core and shell regions, several receptor types (dopamine, orexin, AMPA-type glutamate), and possible contributions of sex hormones. Finally, we discuss how stressors such as early life stress and anxiety-like states may interact with sex differences to contribute to alcohol drinking. Together, these findings underscore the importance and critical relevance of studying female and male mechanisms for alcohol and co-morbid conditions to gain a true and clinically useful understanding of addiction and neuropsychiatric mechanisms and treatment.


Asunto(s)
Consumo Excesivo de Bebidas Alcohólicas/metabolismo , Hormonas Esteroides Gonadales/metabolismo , Núcleo Accumbens/metabolismo , Caracteres Sexuales , Consumo Excesivo de Bebidas Alcohólicas/patología , Consumo Excesivo de Bebidas Alcohólicas/fisiopatología , Consumo Excesivo de Bebidas Alcohólicas/terapia , Femenino , Humanos , Masculino , Núcleo Accumbens/patología , Núcleo Accumbens/fisiopatología
5.
Alcohol Clin Exp Res ; 44(7): 1400-1409, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32472651

RESUMEN

BACKGROUND: More women are being diagnosed with alcohol use disorder (AUD), are increasing the amount of alcohol they are drinking, and are partaking in risky drinking behaviors. Compulsive drinking which persists despite negative consequences is a hallmark of AUD. Preclinical aversion-resistant models suggest that females may be more vulnerable to the rewarding effects of alcohol such that they show increased compulsivity when drinking is punished with quinine, a bitter tastant. METHODS: Male and female C57BL/6J mice were trained in an operant response task on a first-order fixed ratio schedule. Experiment 1 tested responding for escalating concentrations (10 to 25%) of ethanol (EtOH). Experiment 2 assessed the effects of increasing concentrations of quinine (100, 250, or 500 µM) on responding for 10% EtOH followed by a 48-hour 2-bottle choice quinine preference test. Experiment 3 investigated the effects of increasing concentrations of quinine (100, 250, or 500 µM) on responding for 2.5% sucrose. RESULTS: Experiment 1 revealed that females respond more than males for 15% EtOH. Experiment 2 showed that females tolerate higher concentrations of quinine in EtOH than males. Males reduced responding for 10% EtOH when adulterated with 250 or 500 µM of quinine, while females did not reduce responding at any concentration of quinine. Males and females also exhibited similar preference for quinine in a 2-bottle drinking task. Experiment 3 demonstrated that both males and females reduced responding for 2.5% sucrose when quinine (100, 250, or 500 µM) was added. CONCLUSIONS: Females respond more for EtOH at higher concentrations and continue to respond for 10% EtOH at all concentrations of quinine, suggesting that female mice are more motivated to respond for EtOH in an operant self-administration paradigm than males. Understanding behavioral and mechanistic sex differences in responding for alcohol will allow for the advancement of treatments for women with AUD.


Asunto(s)
Consumo de Bebidas Alcohólicas , Conducta Animal , Depresores del Sistema Nervioso Central/administración & dosificación , Conducta Compulsiva , Etanol/administración & dosificación , Motivación , Recompensa , Animales , Agentes Aversivos , Condicionamiento Operante , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Quinina , Autoadministración , Factores Sexuales
6.
Addict Biol ; 25(6): e12829, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31657073

RESUMEN

Acute early life stress (ELS) alters stress system functioning in adulthood and increases susceptibility to posttraumatic stress disorder (PTSD) and alcohol use disorder (AUD). The current study assessed the effects of acute, infant ELS on alcohol drinking, including aversion-resistant drinking, in male and female Long Evans rats. Acute ELS was induced using a stress-enhanced fear learning (SEFL) protocol that consisted of 15 footshocks delivered on postnatal day (PND) 17. Alcohol drinking during adolescence and adulthood was measured with a two-bottle choice intermittent alcohol access paradigm. Aversion-resistant drinking was assessed in adulthood by adding quinine (0.01, 0.1, and 1.0 g/L) to the alcohol bottle after 5 to 6 weeks and 11 to 12 weeks of drinking. ELS had minimal influences on adolescent and adult alcohol consumption and preference. However, ELS, sex, and alcohol exposure history all influenced aversion-resistant alcohol drinking in an additive fashion. Higher concentrations of quinine were tolerated in females, ELS-exposed rats, and after 11 to 12 weeks of drinking. Tests of quinine sensitivity in a separate cohort of animals found that rats can detect concentrations of quinine as low as 0.001 g/L in water and that quinine sensitivity is not influenced by sex or ELS exposure. These results agree with reports of sex differences in aversion-resistant drinking and are the first to demonstrate an influence of ELS on this behavior. Our results also suggest that a single traumatic stress exposure in infancy may be a promising model of comorbid PTSD and AUD and useful in studying the interactions between ELS, sex, and alcohol dependence.


Asunto(s)
Consumo de Bebidas Alcohólicas , Comportamiento de Búsqueda de Drogas , Caracteres Sexuales , Estrés Psicológico , Animales , Femenino , Masculino , Ratas , Consumo de Bebidas Alcohólicas/psicología , Alcoholismo/psicología , Miedo/psicología , Quinina , Ratas Long-Evans
7.
Eur J Neurosci ; 50(3): 2023-2035, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30218623

RESUMEN

There is a compelling evidence that midbrain dopamine (DA) neurons and their projections to the ventral striatum provide a mechanism for motivating reward-seeking behavior, and for utilizing information about unexpected reward prediction errors (RPEs) to guide behavior based on current, rather than historical, outcomes. When this mechanism is compromised in addictions, it may produce patterns of maladaptive behavior that remain obdurate in the face of contrary information and even adverse consequences. Nonetheless, DAergic contributions to performance on behavioral tasks that rely on the ability to flexibly update stimulus-reward relationships remains incompletly understood. In the current study, we used a discrimination and reversal paradigm to monitor subsecond DA release in mouse NAc core (NAc) using in vivo fast-scan cyclic voltammetry (FSCV). We observed post-choice elevations in phasic NAc DA release; however, increased DA transients were only evident during early reversal when mice made responses at the newly rewarded stimulus. Based on this finding, we used in vivo optogenetic (eNpHR) photosilencing and (Channelrhodopsin2 [ChR2]) photostimulation to assess the effects of manipulating VTA-DAergic fibers in the NAc on reversal performance. Photosilencing the VTA â†’ NAc DAergic pathway during early reversal increased errors, while photostimulation did not demonstrably affect behavior. Taken together, these data provide additional evidence of the importance of NAc DA release as a neural substrate supporting adjustments in learned behavior after a switch in expected stimulus-reward contingencies. These findings have possible implications for furthering understanding the role of DA in persistent, maladaptive decision-making characterizing addictions.


Asunto(s)
Cognición/fisiología , Condicionamiento Operante/fisiología , Núcleo Accumbens/fisiología , Recompensa , Animales , Neuronas Dopaminérgicas/metabolismo , Masculino , Ratones Endogámicos C57BL , Motivación/fisiología , Área Tegmental Ventral/fisiología
8.
Alcohol Clin Exp Res ; 43(2): 243-249, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30431655

RESUMEN

BACKGROUND: Alcohol use disorder is characterized by compulsive alcohol intake, or drinking despite negative consequences. Previous studies have shown that female rodents have a heightened vulnerability to drug use across different stages of the addictive cycle, but no previous studies have studied females in a model of aversion-resistant alcohol intake. Here, we investigated sex differences in binge-like and aversion-resistant alcohol drinking in C57BL/6J mice using a modified drinking-in-the-dark (DID) paradigm. METHODS: In Experiment 1, 24-hour aversion to quinine (0, 100, or 250 µM) was assessed. In Experiment 2, male and female adult C57BL/6J mice consumed 15% ethanol (EtOH) or water in a 2-bottle limited-access DID paradigm for 2 h/d for 15 days. The EtOH was next adulterated with quinine (0, 100, or 250 µM) over 3 consecutive drinking sessions to test aversion-resistant intake. In Experiment 3, intake of quinine-adulterated (100 µM) EtOH was assessed across all 15 drinking sessions. RESULTS: Quinine was equally aversive to both sexes in Experiment 1. In Experiment 2, female mice consumed significantly more alcohol than male mice during the final 6 drinking sessions. Levels of aversion-resistant intake did not differ between the sexes. In Experiment 3, quinine suppressed consumption in all mice, though females drank significantly more on the final 2 sessions. CONCLUSIONS: The results of this study demonstrate that while female mice escalate and consume more EtOH than males, both sexes exhibit similar levels of aversion-resistant drinking. These results inform our understanding of how sex interacts with vulnerability for addiction and argue for the inclusion of females in more studies of aversion-resistant alcohol drinking.


Asunto(s)
Consumo de Bebidas Alcohólicas/prevención & control , Reacción de Prevención/efectos de los fármacos , Consumo Excesivo de Bebidas Alcohólicas/prevención & control , Quinina/farmacología , Consumo de Bebidas Alcohólicas/psicología , Animales , Consumo Excesivo de Bebidas Alcohólicas/psicología , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Ratones , Caracteres Sexuales
9.
Addict Biol ; 22(2): 423-434, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26687341

RESUMEN

Addictions, including alcohol use disorders, are characterized by the loss of control over drug seeking and consumption, but the neural circuits and signaling mechanisms responsible for the transition from controlled use to uncontrolled abuse remain incompletely understood. Prior studies have shown that 'compulsive-like' behaviors in rodents, for example, persistent responding for ethanol (EtOH) despite punishment, are increased after chronic exposure to EtOH. The main goal of the current study was to assess the effects of chronic intermittent EtOH (CIE) exposure on multiple, putative measures of compulsive-like EtOH seeking in C57BL/6 J mice. Mice were exposed to two or four weekly cycles of CIE and then, post-withdrawal, tested for progressive ratio responding for EtOH, sustained responding during signaled EtOH unavailability and (footshock) punished suppression of responding for EtOH. Results showed that mice exposed to CIE exhibited attenuated suppression of EtOH seeking during punishment, as compared with air-exposed controls. By contrast, CIE exposure affected neither punished food reward-seeking behavior, nor other putative measures of compulsive-like EtOH seeking. Ex vivo reverse transcription polymerase chain reaction analysis of brain tissue found reduced sensitivity to punished EtOH seeking after CIE exposure was accompanied by a significant increase in gene expression of the GluN1 and GluN2A subunits of the N-methyl-d-aspartate receptor, specifically in the medial orbitofrontal cortex. Moreover, slice electrophysiological analysis revealed increased N-methyl-d-aspartate receptor-mediated currents in the orbitofrontal cortex after CIE exposure in test-naïve mice. Collectively, the current findings add to the growing body of evidence demonstrating that chronic exposure to EtOH fosters resistance to punished EtOH seeking in association with adaptations in cortical glutamatergic transmission.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Conducta Compulsiva , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Etanol/farmacología , Castigo , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Depresores del Sistema Nervioso Central/administración & dosificación , Conducta Compulsiva/genética , Etanol/administración & dosificación , Alimentos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/efectos de los fármacos , Proteínas del Tejido Nervioso/genética , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Recompensa
10.
Behav Pharmacol ; 27(2-3 Spec Issue): 133-6, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26292189

RESUMEN

Rats selectively bred for high (HiS) or low (LoS) saccharin intake are a well-established model of drug-abuse vulnerability, with HiS rats being more likely to consume sweets and cocaine than LoS rats. Still, the nature of these differences is poorly understood. This study examined whether the motivational consequences of cocaine exposure are differentially expressed in HiS and LoS rats by measuring intracranial self-stimulation (ICSS) thresholds following acute injections of cocaine (10 mg/kg). Reductions in ICSS thresholds following cocaine injection were greater in HiS rats than in LoS rats, suggesting that the reward-enhancing effects of cocaine are greater in the drug-vulnerable HiS than LoS rats. Higher cocaine-induced reward, indicated by lower ICSS thresholds, may explain the higher rates of drug consumption in sweet-preferring animal models, providing a clue to the etiology of cocaine addiction in vulnerable populations.


Asunto(s)
Cocaína/administración & dosificación , Inhibidores de Captación de Dopamina/administración & dosificación , Preferencias Alimentarias/fisiología , Recompensa , Autoestimulación , Trastornos Relacionados con Sustancias/tratamiento farmacológico , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Estimulación Eléctrica , Masculino , Ratas , Sacarina/metabolismo , Edulcorantes/metabolismo
11.
Behav Pharmacol ; 26(5): 485-8, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26154436

RESUMEN

Investigations into animal models of drug withdrawal have largely found that emotional signs of withdrawal (e.g. anxiety, anhedonia, and aversion) in adolescents are experienced earlier and less severely than in their adult counterparts. The majority of these reports have examined withdrawal from ethanol or nicotine. To expand our knowledge about the emotional withdrawal state in adolescent rats, we used potentiation of the acoustic startle reflex after an acute dose of morphine (10 mg/kg, subcutaneously) as a measure of opiate withdrawal. Startle was measured at four time points after morphine injection (2, 3, 4, and 5 h) in 28-day-old and 90-day-old male and female rats. The results of this experiment revealed that peak potentiation of the startle reflex occurred at 3 h in the adolescent rats and at 5 h in the adult rats, and that the magnitude of withdrawal was larger in the adults. No sex differences were observed. Overall, these results affirm that, similar to withdrawal from ethanol and nicotine, opiate withdrawal signs are less severe in adolescent than in adult rats.


Asunto(s)
Envejecimiento/psicología , Morfina/toxicidad , Narcóticos/toxicidad , Reflejo de Sobresalto/fisiología , Caracteres Sexuales , Síndrome de Abstinencia a Sustancias/psicología , Estimulación Acústica , Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Análisis de Varianza , Animales , Femenino , Masculino , Morfina/farmacología , Narcóticos/farmacología , Ratas Sprague-Dawley , Reflejo de Sobresalto/efectos de los fármacos , Síndrome de Abstinencia a Sustancias/fisiopatología , Factores de Tiempo
12.
Neuropharmacology ; 255: 110019, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810926

RESUMEN

The endogenous opioid system has been implicated in alcohol consumption and preference in both humans and animals. The mu opioid receptor (MOR) is expressed on multiple cells in the striatum, however little is known about the contributions of specific MOR populations to alcohol drinking behaviors. The current study used mice with a genetic deletion of MOR in cholinergic cells (ChAT-Cre/Oprm1fl/fl) to examine the role of MORs expressed in cholinergic interneurons (CINs) in home cage self-administration paradigms. Male and female ChAT-Cre/Oprm1fl/fl mice were generated and heterozygous Cre+ (knockout) and Cre- (control) mice were tested for alcohol consumption in two drinking paradigms: limited access "Drinking in the Dark" and intermittent access. Quinine was added to the drinking bottles in the DID experiment to test aversion-resistant, "compulsive" drinking. Nicotine and sucrose drinking were also assessed so comparisons could be made with other rewarding substances. Cholinergic MOR deletion did not influence consumption or preference for ethanol (EtOH) in either drinking task. Differences were observed in aversion-resistance in males with Cre + mice tolerating lower concentrations of quinine than Cre-. In contrast to EtOH, preference for nicotine was reduced following cholinergic MOR deletion while sucrose consumption and preference was increased in Cre+ (vs. Cre-) females. Locomotor activity was also greater in females following the deletion. These results suggest that cholinergic MORs participate in preference for rewarding substances. Further, while they are not required for consumption of alcohol alone, cholinergic MORs may influence the tendency to drink despite negative consequences.


Asunto(s)
Consumo de Bebidas Alcohólicas , Ratones Noqueados , Quinina , Receptores Opioides mu , Recompensa , Animales , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Masculino , Femenino , Ratones , Quinina/farmacología , Quinina/administración & dosificación , Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/psicología , Nicotina/farmacología , Etanol/farmacología , Etanol/administración & dosificación , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/fisiología , Neuronas Colinérgicas/metabolismo , Autoadministración , Sacarosa/administración & dosificación , Reacción de Prevención/efectos de los fármacos , Reacción de Prevención/fisiología , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Interneuronas/metabolismo
13.
Psychopharmacology (Berl) ; 240(7): 1417-1433, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37162529

RESUMEN

Withdrawal from opioids involves a negative affective state that promotes maintenance of drug-seeking behavior and relapse. As such, understanding the neurobiological mechanisms underlying withdrawal from opioid drugs is critical as scientists and clinicians seek to develop new treatments and therapies. In this review, we focus on the neural systems known to mediate the affective and somatic signs and symptoms of opioid withdrawal, including the mesolimbic dopaminergic system, basolateral amygdala, extended amygdala, and brain and hormonal stress systems. Evidence from preclinical studies suggests that these systems are altered following opioid exposure and that these changes mediate behavioral signs of negative affect such as aversion and anxiety during withdrawal. Adaptations in these systems also parallel the behavioral and psychological features of opioid use disorder (OUD), highlighting the important role of withdrawal in the development of addictive behavior. Implications for relapse and treatment are discussed as well as promising avenues for future research, with the hope of promoting continued progress toward characterizing neural contributors to opioid withdrawal and compulsive opioid use.


Asunto(s)
Conducta Adictiva , Trastornos Relacionados con Opioides , Síndrome de Abstinencia a Sustancias , Humanos , Analgésicos Opioides/efectos adversos , Síndrome de Abstinencia a Sustancias/psicología , Conducta Adictiva/psicología , Encéfalo , Trastornos Relacionados con Opioides/psicología , Recurrencia
14.
Psychopharmacology (Berl) ; 240(12): 2607-2616, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37653347

RESUMEN

RATIONALE: Female rodents consume more ethanol (EtOH) than males and exhibit greater aversion-resistant drinking in some paradigms. Ovarian hormones promote EtOH drinking but the contribution of ovarian hormones to aversion-resistant drinking has not been assessed. OBJECTIVES: We aimed to investigate the role of ovarian hormones to aversion-resistant drinking in female mice in a drinking in the dark (DID) task. METHODS: Female C57BL/6 J mice first underwent an ovariectomy (OVX, n = 16) or sham (SHAM, n = 16) surgery. Four weeks following surgery, mice underwent a DID paradigm where they were given access to water and 15% EtOH 3 h into the dark cycle for up to 4 h across 15 drinking sessions. To assess frontloading behavior, bottles were weighed at 30 min, 2 h, and 4 h. Aversion-resistance was tested by adding escalating concentrations of quinine (0, 100, 250, and 500 µM) to the 15% EtOH bottle on sessions 16 - 19. RESULTS: Removal of the ovaries reduced EtOH consumption in OVX subjects. When assessing aversion-resistant EtOH drinking, mice with ovarian hormones (SHAM) reduced consumption of 250 and 500 µM quinine in EtOH, while OVX subjects exhibited aversion-resistance at all quinine concentrations. OVX mice had greater frontloading for quinine + EtOH at higher concentrations of quinine. CONCLUSIONS: These results indicate that circulating ovarian hormones may be protective against the development of aversion-resistant EtOH drinking and call for further investigation of the role of ovarian hormones in models of addictive behavior.


Asunto(s)
Ovario , Quinina , Humanos , Masculino , Ratones , Femenino , Animales , Ratones Endogámicos C57BL , Consumo de Bebidas Alcohólicas , Etanol/farmacología , Hormonas
15.
bioRxiv ; 2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36711856

RESUMEN

In humans, early life stress (ELS) is associated with an increased risk for developing both alcohol use disorder (AUD) and post-traumatic stress disorder (PTSD). We have previously used an infant footshock model to explore this shared predisposition. Infant footshock produces stress-enhanced fear learning (SEFL) in rats and mice and increases aversion-resistant alcohol drinking in rats. The goal of the current study was to extend this model of comorbid PTSD and AUD to male and female C57BL/6J mice. Acute ELS was induced using 15 foot-shocks on postnatal day 17. In adulthood, after PND 90, ethanol drinking behavior was tested in one of three two-bottle choice drinking paradigms: continuous access, limited access drinking in the dark, or intermittent access. In continuous access, mice were given 24 h access to 5% or 10% ethanol and water. Each ethanol concentration was provided for five consecutive drinking sessions. In limited access drinking in the dark, mice were given 2 h of access to 15% ethanol and water across 15 sessions. Ethanol was provided 3 h into the dark cycle to maximize task engagement when mice are most active. In intermittent access, mice were presented with 20% ethanol and water Monday, Wednesday, and Friday, for four consecutive weeks. In a fifth week of intermittent access drinking, increasing concentrations of quinine (10 mg/L, 100 mg/L, and 200 mg/L) were added to the ethanol to test aversion-resistant drinking. Our results indicate that infant footshock does not influence adult ethanol consumption in mice. Infant footshock did not affect ethanol-only consumption or preference in any of the three drinking paradigms. Further, and in contrast to our previous results in rats, infant footshock did not appear to influence consumption of quinine-adulterated ethanol. The biological sex of the mice did affect ethanol-only consumption in all three drinking paradigms, with females consuming more ethanol than males. Preference for ethanol vs. water was higher in females only under continuous access conditions. Our results suggest that infant footshock alone may not be sufficient to increase drinking levels in mice. We hypothesize that infant footshock may require a secondary, adolescent stress exposure to influence ethanol drinking behavior. Further research is needed to create a valid model of PTSD-AUD comorbidity in male and female mice.

16.
bioRxiv ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38014065

RESUMEN

Heavy alcohol use and binge drinking are important contributors to alcohol use disorder (AUD). The endogenous opioid system has been implicated in alcohol consumption and preference in both humans and animals. The mu opioid receptor (MOR) is expressed on multiple cells in the striatum, however little is known about the contributions of specific MOR populations to alcohol drinking behaviors. The current study used mice with a genetic deletion of MOR in cholinergic cells (ChAT-Cre/Oprm1 fl/fl ) to examine the role of MORs expressed in cholinergic interneurons (CINs) in home cage self-administration paradigms. Male and female ChAT-Cre/Oprm1 fl/fl mice were generated and heterozygous Cre+ (knockout) and Cre-(control) mice were tested for alcohol and nicotine consumption. In Experiment 1, binge-like and quinine-resistant drinking was tested using 15% ethanol (EtOH) in a two-bottle, limited-access Drinking in the Dark paradigm. Experiment 2 involved a six-week intermittent access paradigm in which mice received 20% EtOH, nicotine, and then a combination of the two drugs. Deleting MORs in cholinergic cells did not alter consumption of EtOH in Experiment 1 or 2. In Experiment 1, the MOR deletion resulted in greater consumption of quinine-adulterated EtOH in male Cre+ mice (vs. Cre-). In Experiment 2, Cre+ mice demonstrated a significantly lower preference for nicotine but did not differ from Cre-mice in nicotine or nicotine + EtOH consumption. These data suggest that cholinergic MORs are involved in nicotine, but not EtOH, drinking behaviors and may contribute to aversion resistant EtOH drinking in a sex-dependent manner.

17.
Alcohol Clin Exp Res (Hoboken) ; 47(4): 678-686, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36822578

RESUMEN

BACKGROUND: One characteristic of alcohol use disorder is compulsive drinking or drinking despite negative consequences. When quinine is used to model such aversion-resistant drinking, female rodents typically are more resistant to punishment than males. Using an operant response task where C57BL/6J responded for ethanol mixed with quinine, we previously demonstrated that female mice tolerate higher concentrations of quinine in ethanol than males. Here, we aimed to determine whether this female vulnerability to aversion-resistant drinking behavior is similarly observed with footshock punishment. METHODS: Male and female C57BL/6J mice were trained to respond for 10% ethanol in an operant task on a fixed-ratio three schedule. After consistent responding, mice were tested in a punishment session using either a 0.25 mA or 0.35 milliamp (mA) footshock. To assess footshock sensitivity, a subset of mice underwent a flinch, jump, and vocalize test in which behavioral responses to increasing amplitudes of footshock (0.05 to 0.95 mA) were assessed. In a separate cohort of mice, males and females were trained to respond for 2.5% sucrose and responses were punished using a 0.25 mA footshock. RESULTS: Males and females continued to respond for 10% ethanol when paired with a 0.25 mA footshock. Females alone continued to respond for ethanol when a 0.35 mA footshock was delivered. Both males and females reduced responding for 2.5% sucrose when punished with a 0.25 mA footshock. Footshock sensitivity in the flinch, jump, and vocalize test did not differ by sex. CONCLUSIONS: Females continue to respond for 10% ethanol despite a 0.35 mA footshock, and this behavior is not due to differences in footshock sensitivity between males and females. These results show that female C57BL/6J mice are generally more resistant to punishment in an operant self-administration paradigm. The findings add to the literature characterizing aversion-resistant alcohol-drinking behaviors in females.


Asunto(s)
Etanol , Castigo , Ratones , Masculino , Femenino , Animales , Etanol/farmacología , Condicionamiento Operante/fisiología , Ratones Endogámicos C57BL , Quinina , Consumo de Bebidas Alcohólicas , Autoadministración , Sacarosa
18.
Front Psychiatry ; 14: 1098387, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36960454

RESUMEN

Introduction: While substantial research has focused on the contribution of sex hormones to driving elevated levels of alcohol drinking in female rodents, fewer studies have investigated how genetic influences may underlie sex differences in this behavior. Methods: We used the Four Core Genotypes (FCG) mouse model to explore the contribution of sex chromosome complement (XX/XY) and gonad type [ovaries (Sry-)/testes (Sry+)] to ethanol (EtOH) consumption and quinine-resistant drinking across two voluntary self-administration tasks: limited access consumption in the home cage and an operant response task. Results: For limited access drinking in the dark, XY/Sry + (vs. XX/Sry +) mice consumed more 15% EtOH across sessions while preference for 15% EtOH vs. water was higher in XY vs. XX mice regardless of gonad type. XY chromosomes promoted quinine-resistant drinking in mice with ovaries (Sry-) and the estrous cycle did not affect the results. In the operant response task, responding for EtOH was concentration dependent in all genotypes except XX/Sry + mice, which maintained consistent response levels across all concentrations (5-20%) of EtOH. When increasing concentrations of quinine (100-500 µM) were added to the solution, FCG mice were insensitive to quinine-punished EtOH responding, regardless of sex chromosome complement. Sry + mice were further found to be insensitive to quinine when presented in water. Importantly, these effects were not influenced by sensitivity to EtOH's sedative effect, as no differences were observed in the time to lose the righting reflex or the time to regain the righting reflex between genotypes. Additionally, no differences in EtOH concentration in the blood were observed between any of the genotypes once the righting reflex was regained. Discussion: These results provide evidence that sex chromosome complement regulates EtOH consumption, preference, and aversion resistance and add to a growing body of literature suggesting that chromosomal sex may be an important contributor to alcohol drinking behaviors. Examination of sex-specific genetic differences may uncover promising new therapeutic targets for high-risk drinking.

19.
bioRxiv ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38077082

RESUMEN

Mu-opioid receptors (MORs) in the amygdala and striatum are important in addictive and rewarding behaviors. Foxp2 is a marker of intercalated (ITC) cells in the amygdala and a subset of striatal medium spiny neurons (MSNs), both of which express MORs in wild-type mice. For the current series of studies, we characterized the behavior of mice with genetic deletion of the MOR gene Oprm1 in Foxp2-expressing neurons (Foxp2-Cre/Oprm1 fl/fl ). Male and female Foxp2-Cre/Oprm1 fl/fl mice were generated and heterozygous Cre+ (knockout) and homozygous Cre-(control) animals were tested for aversion-resistant alcohol consumption using an intermittent access (IA) task, operant responding for a sucrose reward, conditioned place aversion (CPA) to morphine withdrawal, and locomotor sensitization to morphine. In IA, mice with the MOR-knockout were more sensitive to quinine-adulterated ethanol (EtOH) and less aversion-resistant, as they decreased EtOH consumption from baseline at all quinine concentrations, while control animals did not. In operant conditioning, Cre+ mice similarly exhibited less aversion-resistant reward seeking than Cre-mice when sucrose was adulterated with quinine. For CPA, both control and MOR-knockout mice demonstrated withdrawal-induced aversion. For locomotor sensitization, Cre+ mice demonstrated decreased locomotion following morphine injection compared to Cre-mice. The results of these studies suggest that MOR expression on Foxp2-expressing neurons is not necessary for rewarded behaviors or expression of opioid withdrawal but may be involved in aversion-resistance.

20.
J Neurosci ; 31(20): 7533-9, 2011 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-21593338

RESUMEN

Opponent process theory predicts that the first step in the induction of drug withdrawal is the activation of reward-related circuitry. Using the acoustic startle reflex as a model of anxiety-like behavior in rats, we show the emergence of a negative affective state during withdrawal after direct infusion of morphine into the ventral tegmental area (VTA), the origin of the mesolimbic dopamine system. Potentiation of startle during withdrawal from systemic morphine exposure requires a decrease in opiate receptor stimulation in the VTA and can be relieved by administration of the dopamine receptor agonist apomorphine. Together, our results suggest that the emergence of anxiety during withdrawal from acute opiate exposure begins with activation of VTA mesolimbic dopamine circuitry, providing a mechanism for the opponent process view of withdrawal.


Asunto(s)
Trastornos Relacionados con Opioides/fisiopatología , Filtrado Sensorial/fisiología , Síndrome de Abstinencia a Sustancias/fisiopatología , Área Tegmental Ventral/fisiología , Animales , Masculino , Actividad Motora/fisiología , Red Nerviosa/fisiología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA