Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Circulation ; 139(15): 1813-1827, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30700140

RESUMEN

BACKGROUND: Titin is a giant elastic protein that spans the half-sarcomere from Z-disk to M-band. It acts as a molecular spring and mechanosensor and has been linked to striated muscle disease. The pathways that govern titin-dependent cardiac growth and contribute to disease are diverse and difficult to dissect. METHODS: To study titin deficiency versus dysfunction, the authors generated and compared striated muscle specific knockouts (KOs) with progressive postnatal loss of the complete titin protein by removing exon 2 (E2-KO) or an M-band truncation that eliminates proper sarcomeric integration, but retains all other functional domains (M-band exon 1/2 [M1/2]-KO). The authors evaluated cardiac function, cardiomyocyte mechanics, and the molecular basis of the phenotype. RESULTS: Skeletal muscle atrophy with reduced strength, severe sarcomere disassembly, and lethality from 2 weeks of age were shared between the models. Cardiac phenotypes differed considerably: loss of titin leads to dilated cardiomyopathy with combined systolic and diastolic dysfunction-the absence of M-band titin to cardiac atrophy and preserved function. The elastic properties of M1/2-KO cardiomyocytes are maintained, while passive stiffness is reduced in the E2-KO. In both KOs, we find an increased stress response and increased expression of proteins linked to titin-based mechanotransduction (CryAB, ANKRD1, muscle LIM protein, FHLs, p42, Camk2d, p62, and Nbr1). Among them, FHL2 and the M-band signaling proteins p62 and Nbr1 are exclusively upregulated in the E2-KO, suggesting a role in the differential pathology of titin truncation versus deficiency of the full-length protein. The differential stress response is consistent with truncated titin contributing to the mechanical properties in M1/2-KOs, while low titin levels in E2-KOs lead to reduced titin-based stiffness and increased strain on the remaining titin molecules. CONCLUSIONS: Progressive depletion of titin leads to sarcomere disassembly and atrophy in striated muscle. In the complete knockout, remaining titin molecules experience increased strain, resulting in mechanically induced trophic signaling and eventually dilated cardiomyopathy. The truncated titin in M1/2-KO helps maintain the passive properties and thus reduces mechanically induced signaling. Together, these findings contribute to the molecular understanding of why titin mutations differentially affect cardiac growth and have implications for genotype-phenotype relations that support a personalized medicine approach to the diverse titinopathies.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Mecanotransducción Celular , Miocitos Cardíacos/metabolismo , Proteínas Quinasas/deficiencia , Sarcómeros/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Derecha/metabolismo , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/fisiopatología , Eliminación de Gen , Masculino , Ratones Noqueados , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Miocitos Cardíacos/patología , Fenotipo , Proteínas Quinasas/genética , Sarcómeros/patología , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Derecha/genética , Disfunción Ventricular Derecha/patología , Disfunción Ventricular Derecha/fisiopatología , Función Ventricular Izquierda , Función Ventricular Derecha
2.
Eur Heart J ; 40(40): 3318-3332, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31004144

RESUMEN

AIMS: Heart failure with preserved ejection fraction (HFpEF) and pathological cardiac aging share a complex pathophysiology, including extracellular matrix remodelling (EMR). Protease-activated receptor 2 (PAR2) deficiency is associated with EMR. The roles of PAR1 and PAR2 have not been studied in HFpEF, age-dependent cardiac fibrosis, or diastolic dysfunction (DD). METHODS AND RESULTS: Evaluation of endomyocardial biopsies from patients with HFpEF (n = 14) revealed that a reduced cardiac PAR2 expression was associated with aggravated DD and increased myocardial fibrosis (r = -0.7336, P = 0.0028). In line, 1-year-old PAR2-knockout (PAR2ko) mice suffered from DD with preserved systolic function, associated with an increased age-dependent α-smooth muscle actin expression, collagen deposition (1.7-fold increase, P = 0.0003), lysyl oxidase activity, collagen cross-linking (2.2-fold increase, P = 0.0008), endothelial activation, and inflammation. In the absence of PAR2, the receptor-regulating protein caveolin-1 was down-regulated, contributing to an augmented profibrotic PAR1 and transforming growth factor beta (TGF-ß)-dependent signalling. This enhanced TGF-ß/PAR1 signalling caused N-proteinase (ADAMTS3) and C-proteinase (BMP1)-related increased collagen I production from cardiac fibroblasts (CFs). PAR2 overexpression in PAR2ko CFs reversed these effects. The treatment with the PAR1 antagonist, vorapaxar, reduced cardiac fibrosis by 44% (P = 0.03) and reduced inflammation in a metabolic disease model (apolipoprotein E-ko mice). Patients with HFpEF with upstream PAR inhibition via FXa inhibitors (n = 40) also exhibited reduced circulating markers of fibrosis and DD compared with patients treated with vitamin K antagonists (n = 20). CONCLUSIONS: Protease-activated receptor 2 is an important regulator of profibrotic PAR1 and TGF-ß signalling in the heart. Modulation of the FXa/FIIa-PAR1/PAR2/TGF-ß-axis might be a promising therapeutic approach to reduce HFpEF.


Asunto(s)
Cardiomiopatías/metabolismo , Fibrosis/metabolismo , Miocardio/metabolismo , Receptor PAR-2 , Anciano , Animales , Cardiomiopatías/patología , Femenino , Fibrosis/patología , Insuficiencia Cardíaca Diastólica/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Miocardio/patología , Receptor PAR-2/deficiencia , Receptor PAR-2/genética , Receptor PAR-2/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
3.
J Cell Sci ; 127(Pt 17): 3666-74, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24982444

RESUMEN

Cardiac titin is the main determinant of sarcomere stiffness during diastolic relaxation. To explore whether titin stiffness affects the kinetics of cardiac myofibrillar contraction and relaxation, we used subcellular myofibrils from the left ventricles of homozygous and heterozygous N2B-knockout mice which express truncated cardiac titins lacking the unique elastic N2B region. Compared with myofibrils from wild-type mice, myofibrils from knockout and heterozygous mice exhibit increased passive myofibrillar stiffness. To determine the kinetics of Ca(2+)-induced force development (rate constant kACT), myofibrils from knockout, heterozygous and wild-type mice were stretched to the same sarcomere length (2.3 µm) and rapidly activated with Ca(2+). Additionally, mechanically induced force-redevelopment kinetics (rate constant kTR) were determined by slackening and re-stretching myofibrils during Ca(2+)-mediated activation. Myofibrils from knockout mice exhibited significantly higher kACT, kTR and maximum Ca(2+)-activated tension than myofibrils from wild-type mice. By contrast, the kinetic parameters of biphasic force relaxation induced by rapidly reducing [Ca(2+)] were not significantly different among the three genotypes. These results indicate that increased titin stiffness promotes myocardial contraction by accelerating the formation of force-generating cross-bridges without decelerating relaxation.


Asunto(s)
Conectina/metabolismo , Relajación Muscular/fisiología , Contracción Miocárdica/fisiología , Miofibrillas/metabolismo , Sarcómeros/metabolismo , Eliminación de Secuencia/genética , Animales , Secuencia de Bases/genética , Calcio/metabolismo , Conectina/genética , Cinética , Ratones , Contracción Miocárdica/genética , Miocardio/metabolismo , Miofibrillas/fisiología
4.
Nat Commun ; 14(1): 3714, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349314

RESUMEN

Dilated cardiomyopathy is the second most common cause for heart failure with no cure except a high-risk heart transplantation. Approximately 30% of patients harbor heritable mutations which are amenable to CRISPR-based gene therapy. However, challenges related to delivery of the editing complex and off-target concerns hamper the broad applicability of CRISPR agents in the heart. We employ a combination of the viral vector AAVMYO with superior targeting specificity of heart muscle tissue and CRISPR base editors to repair patient mutations in the cardiac splice factor Rbm20, which cause aggressive dilated cardiomyopathy. Using optimized conditions, we repair >70% of cardiomyocytes in two Rbm20 knock-in mouse models that we have generated to serve as an in vivo platform of our editing strategy. Treatment of juvenile mice restores the localization defect of RBM20 in 75% of cells and splicing of RBM20 targets including TTN. Three months after injection, cardiac dilation and ejection fraction reach wild-type levels. Single-nuclei RNA sequencing uncovers restoration of the transcriptional profile across all major cardiac cell types and whole-genome sequencing reveals no evidence for aberrant off-target editing. Our study highlights the potential of base editors combined with AAVMYO to achieve gene repair for treatment of hereditary cardiac diseases.


Asunto(s)
Cardiomiopatía Dilatada , Ratones , Animales , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/terapia , Cardiomiopatía Dilatada/metabolismo , Edición Génica , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Miocardio/metabolismo , Mutación , Miocitos Cardíacos/metabolismo
5.
J Mol Cell Cardiol ; 51(3): 428-34, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21708170

RESUMEN

Viscosity is proposed to modulate diastolic function, but only limited understanding of the source(s) of viscosity exists. In vitro experiments have shown that the proline-glutamic acid-valine-lysine (PEVK) rich element of titin interacts with actin, causing a viscous force in the sarcomere. It is unknown whether this mechanism contributes to viscosity in vivo. We tested the hypothesis that PEVK-actin interaction causes cardiac viscosity and is important in vivo via an integrative physiological study on a unique PEVK knockout (KO) model. Both skinned cardiomyocytes and papillary muscle fibers were isolated from wildtype (WT) and PEVK KO mice and passive viscosity was examined using stretch-hold-release and sinusoidal analysis. Viscosity was reduced by ~60% in KO myocytes and ~50% in muscle fibers at room temperature. The PEVK-actin interaction was not modulated by temperature or diastolic calcium, but was increased by lattice compression. Stretch-hold and sinusoidal frequency protocols on intact isolated mouse hearts showed a smaller, 30-40% reduction in viscosity, possibly due to actomyosin interactions, and showed that microtubules did not contribute to viscosity. Transmitral Doppler echocardiography similarly revealed a 40% decrease in LV chamber viscosity in the PEVK KO in vivo. This integrative study is the first to quantify the influence of a specific molecular (PEVK-actin) viscosity in vivo and shows that PEVK-actin interactions are an important physiological source of viscosity.


Asunto(s)
Actinas/metabolismo , Ventrículos Cardíacos/metabolismo , Proteínas Musculares/metabolismo , Proteínas Quinasas/metabolismo , Actomiosina/antagonistas & inhibidores , Animales , Conectina , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Masculino , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Miocardio/metabolismo , Unión Proteica/genética , Proteínas Quinasas/genética , Sarcómeros/genética , Sarcómeros/metabolismo , Viscosidad/efectos de los fármacos
6.
Circ Res ; 105(6): 557-64, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19679835

RESUMEN

RATIONALE: The giant protein titin plays key roles in myofilament assembly and determines the passive mechanical properties of the sarcomere. The cardiac titin molecule has 2 mayor elastic elements, the N2B and the PEVK region. Both have been suggested to determine the elastic properties of the heart with loss of function data only available for the N2B region. OBJECTIVE: The purpose of this study was to investigate the contribution of titin's proline-glutamate-valine-lysine (PEVK) region to biomechanics and growth of the heart. METHODS AND RESULTS: We removed a portion of the PEVK segment (exons 219 to 225; 282 aa) that corresponds to the PEVK element of N2B titin, the main cardiac titin isoform. Adult homozygous PEVK knockout (KO) mice developed diastolic dysfunction, as determined by pressure-volume loops, echocardiography, isolated heart experiments, and muscle mechanics. Immunoelectron microscopy revealed increased strain of the N2B element, a spring region retained in the PEVK-KO. Interestingly, the PEVK-KO mice had hypertrophied hearts with an induction of the hypertrophy and fetal gene response that includes upregulation of FHL proteins. This contrasts the cardiac atrophy phenotype with decreased FHL2 levels that result from the deletion of the N2B element. CONCLUSIONS: Titin's PEVK region contributes to the elastic properties of the cardiac ventricle. Our findings are consistent with a model in which strain of the N2B spring element and expression of FHL proteins trigger cardiac hypertrophy. These novel findings provide a molecular basis for the future differential therapy of isolated diastolic dysfunction versus more complex cardiomyopathies.


Asunto(s)
Cardiomiopatía Hipertrófica/metabolismo , Ventrículos Cardíacos/metabolismo , Proteínas Musculares/metabolismo , Proteínas Quinasas/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Secuencia de Aminoácidos/genética , Animales , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/patología , Cardiomiopatía Hipertrófica/fisiopatología , Conectina , Elasticidad , Ventrículos Cardíacos/fisiopatología , Ventrículos Cardíacos/ultraestructura , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Quinasas/genética , Estructura Terciaria de Proteína/genética , Sarcómeros/genética , Sarcómeros/metabolismo , Sarcómeros/ultraestructura , Eliminación de Secuencia/genética
7.
Sci Transl Med ; 13(622): eabe8952, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34851694

RESUMEN

Heart failure with preserved ejection fraction (HFpEF) is prevalent and deadly, but so far, there is no targeted therapy. A main contributor to the disease is impaired ventricular filling, which we improved with antisense oligonucleotides (ASOs) targeting the cardiac splice factor RBM20. In adult mice with increased wall stiffness, weekly application of ASOs over 2 months increased expression of compliant titin isoforms and improved cardiac function as determined by echocardiography and conductance catheter. RNA sequencing confirmed RBM20-dependent isoform changes and served as a sensitive indicator of potential side effects, largely limited to genes related to the immune response. We validated our approach in human engineered heart tissue, showing down-regulation of RBM20 to less than 50% within 3 weeks of treatment with ASOs, resulting in adapted relaxation kinetics in the absence of cardiac pathology. Our data suggest anti-RBM20 ASOs as powerful cardiac splicing regulators for the causal treatment of human HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Animales , Diástole , Corazón , Ventrículos Cardíacos , Humanos , Ratones , Proteínas de Unión al ARN/metabolismo , Volumen Sistólico
8.
Nat Commun ; 11(1): 3133, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32561764

RESUMEN

Proximity proteomics has greatly advanced the analysis of native protein complexes and subcellular structures in culture, but has not been amenable to study development and disease in vivo. Here, we have generated a knock-in mouse with the biotin ligase (BioID) inserted at titin's Z-disc region to identify protein networks that connect the sarcomere to signal transduction and metabolism. Our census of the sarcomeric proteome from neonatal to adult heart and quadriceps reveals how perinatal signaling, protein homeostasis and the shift to adult energy metabolism shape the properties of striated muscle cells. Mapping biotinylation sites to sarcomere structures refines our understanding of myofilament dynamics and supports the hypothesis that myosin filaments penetrate Z-discs to dampen contraction. Extending this proof of concept study to BioID fusion proteins generated with Crispr/CAS9 in animal models recapitulating human pathology will facilitate the future analysis of molecular machines and signaling hubs in physiological, pharmacological, and disease context.


Asunto(s)
Ligasas de Carbono-Nitrógeno/genética , Proteínas de Escherichia coli/genética , Proteínas Quinasas/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Proteínas Represoras/genética , Sarcómeros/metabolismo , Animales , Animales Recién Nacidos , Biotinilación/genética , Femenino , Técnicas de Sustitución del Gen , Masculino , Redes y Vías Metabólicas , Ratones Transgénicos , Modelos Animales , Miocardio/citología , Miocardio/metabolismo , Prueba de Estudio Conceptual , Mapas de Interacción de Proteínas/fisiología , Proteínas Quinasas/genética , Proteostasis/fisiología , Músculo Cuádriceps/citología , Músculo Cuádriceps/metabolismo , Sarcómeros/genética , Transducción de Señal/fisiología , Relación Estructura-Actividad
9.
PLoS One ; 13(6): e0198492, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29889873

RESUMEN

Diastolic dysfunction is increasingly prevalent in our ageing society and an important contributor to heart failure. The giant protein titin could serve as a therapeutic target, as its elastic properties are a main determinant of cardiac filling in diastole. This study aimed to develop a high throughput pharmacological screen to identify small molecules that affect titin isoform expression through differential inclusion of exons encoding the elastic PEVK domains. We used a dual luciferase splice reporter assay that builds on the titin splice factor RBM20 to screen ~34,000 small molecules and identified several compounds that inhibit the exclusion of PEVK exons. These compounds belong to the class of cardenolides and affect RBM20 dependent titin exon exclusion but did not affect RBFOX1 mediated splicing of FMNL3. We provide evidence that cardenolides do not bind to the RNA interacting domain of RBM20, but reduce RBM20 protein levels and alter transcription of select splicing factors that interact with RBM20. Cardenolides affect titin isoform expression. Understanding their mode of action and harnessing the splice effects through chemical modifications that suppress the effects on ion homeostasis and more selectively affect cardiac splicing has the potential to improve cardiac filling and thus help patients with diastolic heart failure, for which currently no targeted therapy exists.


Asunto(s)
Cardenólidos/farmacología , Conectina/genética , Descubrimiento de Drogas , Genes Reporteros , Empalme del ARN/efectos de los fármacos , Cardenólidos/química , Cardenólidos/metabolismo , Conectina/antagonistas & inhibidores , Conectina/metabolismo , Digitoxina/química , Digitoxina/metabolismo , Digitoxina/farmacología , Células HEK293 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transcripción Genética/efectos de los fármacos
10.
Science ; 356(6335): 307-311, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28428423

RESUMEN

The African naked mole-rat's (Heterocephalus glaber) social and subterranean lifestyle generates a hypoxic niche. Under experimental conditions, naked mole-rats tolerate hours of extreme hypoxia and survive 18 minutes of total oxygen deprivation (anoxia) without apparent injury. During anoxia, the naked mole-rat switches to anaerobic metabolism fueled by fructose, which is actively accumulated and metabolized to lactate in the brain. Global expression of the GLUT5 fructose transporter and high levels of ketohexokinase were identified as molecular signatures of fructose metabolism. Fructose-driven glycolytic respiration in naked mole-rat tissues avoids feedback inhibition of glycolysis via phosphofructokinase, supporting viability. The metabolic rewiring of glycolysis can circumvent the normally lethal effects of oxygen deprivation, a mechanism that could be harnessed to minimize hypoxic damage in human disease.


Asunto(s)
Adaptación Fisiológica , Anaerobiosis , Encéfalo/fisiología , Fructosa/metabolismo , Glucólisis , Ratas Topo/metabolismo , Oxígeno/metabolismo , Animales , Encéfalo/metabolismo , Fructoquinasas/metabolismo , Transportador de Glucosa de Tipo 5/metabolismo , Ácido Láctico/metabolismo , Ratones , Miocardio/metabolismo , Sacarosa/metabolismo
11.
J Mol Med (Berl) ; 94(12): 1349-1358, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27889803

RESUMEN

Impaired diastolic filling is a main contributor to heart failure with preserved ejection fraction (HFpEF), a syndrome with increasing prevalence and no treatment. Both collagen and the giant sarcomeric protein titin determine diastolic function. Since titin's elastic properties can be adjusted physiologically, we evaluated titin-based stiffness as a therapeutic target. We adjusted RBM20-dependent cardiac isoform expression in the titin N2B knockout mouse with increased ventricular stiffness. A ~50 % reduction of RBM20 activity does not only maintain cardiac filling in diastole but also ameliorates cardiac atrophy and thus improves cardiac function in the N2B-deficient heart. Reduced RBM20 activity partially normalized gene expression related to muscle development and fatty acid metabolism. The adaptation of cardiac growth was related to hypertrophy signaling via four-and-a-half lim-domain proteins (FHLs) that translate mechanical input into hypertrophy signals. We provide a novel link between cardiac isoform expression and trophic signaling via FHLs and suggest cardiac splicing as a therapeutic target in diastolic dysfunction. KEY MESSAGE: Increasing the length of titin isoforms improves ventricular filling in heart disease. FHL proteins are regulated via RBM20 and adapt cardiac growth. RBM20 is a therapeutic target in diastolic dysfunction.


Asunto(s)
Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Proteínas Quinasas/genética , Proteínas de Unión al ARN/genética , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Colágeno/genética , Colágeno/metabolismo , Diástole/fisiología , Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocardio/metabolismo , Miocardio/patología , Proteínas Quinasas/deficiencia , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Volumen Sistólico/fisiología
12.
J Clin Invest ; 124(8): 3419-30, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24960161

RESUMEN

Mutations in the gene encoding the RNA-binding protein RBM20 have been implicated in dilated cardiomyopathy (DCM), a major cause of chronic heart failure, presumably through altering cardiac RNA splicing. Here, we combined transcriptome-wide crosslinking immunoprecipitation (CLIP-seq), RNA-seq, and quantitative proteomics in cell culture and rat and human hearts to examine how RBM20 regulates alternative splicing in the heart. Our analyses revealed the presence of a distinct RBM20 RNA-recognition element that is predominantly found within intronic binding sites and linked to repression of exon splicing with RBM20 binding near 3' and 5' splice sites. Proteomic analysis determined that RBM20 interacts with both U1 and U2 small nuclear ribonucleic particles (snRNPs) and suggested that RBM20-dependent splicing repression occurs through spliceosome stalling at complex A. Direct RBM20 targets included several genes previously shown to be involved in DCM as well as genes not typically associated with this disease. In failing human hearts, reduced expression of RBM20 affected alternative splicing of several direct targets, indicating that differences in RBM20 expression may affect cardiac function. Together, these findings identify RBM20-regulated targets and provide insight into the pathogenesis of human heart failure.


Asunto(s)
Empalme Alternativo , Miocardio/metabolismo , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Animales , Secuencia de Bases , Sitios de Unión/genética , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Estudios de Cohortes , Exones , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Humanos , Mutación , Miocitos Cardíacos/metabolismo , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN , Sitios de Empalme de ARN , Proteínas de Unión al ARN/genética , Ratas , Ratas Sprague-Dawley , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Ribonucleoproteína Nuclear Pequeña U2/metabolismo , Selección Genética , Empalmosomas/metabolismo
13.
Nat Med ; 18(5): 766-73, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22466703

RESUMEN

Alternative splicing has a major role in cardiac adaptive responses, as exemplified by the isoform switch of the sarcomeric protein titin, which adjusts ventricular filling. By positional cloning using a previously characterized rat strain with altered titin mRNA splicing, we identified a loss-of-function mutation in the gene encoding RNA binding motif protein 20 (Rbm20) as the underlying cause of pathological titin isoform expression. The phenotype of Rbm20-deficient rats resembled the pathology seen in individuals with dilated cardiomyopathy caused by RBM20 mutations. Deep sequencing of the human and rat cardiac transcriptome revealed an RBM20-dependent regulation of alternative splicing. In addition to titin (TTN), we identified a set of 30 genes with conserved splicing regulation between humans and rats. This network is enriched for genes that have previously been linked to cardiomyopathy, ion homeostasis and sarcomere biology. Our studies emphasize the key role of post-transcriptional regulation in cardiac function and provide mechanistic insights into the pathogenesis of human heart failure.


Asunto(s)
Cardiomiopatía Dilatada/genética , Proteínas Musculares/genética , Proteínas Quinasas/genética , Empalme del ARN , Proteínas de Unión al ARN/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Secuencia de Bases , Conectina , Humanos , Proteínas con Dominio LIM/genética , Datos de Secuencia Molecular , Mutación , Proteínas de Unión al ARN/fisiología , Ratas , Ratas Endogámicas BN , Ratas Endogámicas F344
14.
J Cell Biol ; 193(4): 785-98, 2011 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-21555460

RESUMEN

The giant muscle protein titin is an essential structural component of the sarcomere. It forms a continuous periodic backbone along the myofiber that provides resistance to mechanical strain. Thus, the titin filament has been regarded as a blueprint for sarcomere assembly and a prerequisite for stability. Here, a novel titin-eGFP knockin mouse provided evidence that sarcomeric titin is more dynamic than previously suggested. To study the mobility of titin in embryonic and neonatal cardiomyocytes, we used fluorescence recovery after photobleaching and investigated the contribution of protein synthesis, contractility, and calcium load to titin motility. Overall, the kinetics of lateral and longitudinal movement of titin-eGFP were similar. Whereas protein synthesis and developmental stage did not alter titin dynamics, there was a strong, inhibitory effect of calcium on titin mobility. Our results suggest a model in which the largely unrestricted movement of titin within and between sarcomeres primarily depends on calcium, suggesting that fortification of the titin filament system is activity dependent.


Asunto(s)
Proteínas Musculares/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Quinasas/metabolismo , Sarcómeros/metabolismo , Animales , Animales Recién Nacidos , Calcio/metabolismo , Células Cultivadas , Conectina , Recuperación de Fluorescencia tras Fotoblanqueo , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Cinética , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos , Microscopía por Video , Proteínas Musculares/genética , Proteínas Quinasas/genética , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo
15.
J Exp Med ; 205(10): 2369-79, 2008 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-18794341

RESUMEN

The Coxsackievirus-adenovirus receptor (CAR) is known for its role in virus uptake and as a protein of the tight junction. It is predominantly expressed in the developing brain and heart and reinduced upon cardiac remodeling in heart disease. So far, the physiological functions of CAR in the adult heart are largely unknown. We have generated a heart-specific inducible CAR knockout (KO) and found impaired electrical conduction between atrium and ventricle that increased with progressive loss of CAR. The underlying mechanism relates to the cross talk of tight and gap junctions with altered expression and localization of connexins that affect communication between CAR KO cardiomyocytes. Our results indicate that CAR is not only relevant for virus uptake and cardiac remodeling but also has a previously unknown function in the propagation of excitation from the atrium to the ventricle that could explain the association of arrhythmia and Coxsackievirus infection of the heart.


Asunto(s)
Comunicación Celular/fisiología , Sistema de Conducción Cardíaco/fisiología , Receptores Virales/metabolismo , Uniones Estrechas/metabolismo , Animales , Nodo Atrioventricular/fisiología , Cadherinas/genética , Cadherinas/metabolismo , Células Cultivadas , Conexina 43/genética , Conexina 43/metabolismo , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus , Infecciones por Coxsackievirus/metabolismo , Infecciones por Coxsackievirus/fisiopatología , Electrocardiografía , Electrofisiología , Uniones Comunicantes/metabolismo , Corazón/anatomía & histología , Corazón/embriología , Corazón/crecimiento & desarrollo , Corazón/fisiología , Sistema de Conducción Cardíaco/anatomía & histología , Humanos , Ratones , Ratones Noqueados , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Fenotipo , Receptores Virales/genética
16.
Proc Natl Acad Sci U S A ; 104(9): 3444-9, 2007 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-17360664

RESUMEN

Titin is a giant protein that is in charge of the assembly and passive mechanical properties of the sarcomere. Cardiac titin contains a unique N2B region, which has been proposed to modulate elasticity of the titin filament and to be important for hypertrophy signaling and the ischemic stress response through its binding proteins FHL2 and alphaB-crystallin, respectively. To study the role of the titin N2B region in systole and diastole of the heart, we generated a knockout (KO) mouse deleting only the N2B exon 49 and leaving the remainder of the titin gene intact. The resulting mice survived to adulthood and were fertile. Although KO hearts were small, they produced normal ejection volumes because of an increased ejection fraction. FHL2 protein levels were significantly reduced in the KO mice, a finding consistent with the reduced size of KO hearts. Ultrastructural analysis revealed an increased extension of the remaining spring elements of titin (tandem Ig segments and the PEVK region), which, together with the reduced sarcomere length and increased passive tension derived from skinned cardiomyocyte experiments, translates to diastolic dysfunction as documented by echocardiography. We conclude from our work that the titin N2B region is dispensable for cardiac development and systolic properties but is important to integrate trophic and elastic functions of the heart. The N2B-KO mouse is the first titin-based model of diastolic dysfunction and, considering the high prevalence of diastolic heart failure, it could provide future mechanistic insights into the disease process.


Asunto(s)
Cardiomiopatías/genética , Diástole , Proteínas Musculares/genética , Miocardio/patología , Proteínas Quinasas/genética , Sarcómeros/metabolismo , Eliminación de Secuencia/genética , Animales , Atrofia/patología , Western Blotting , Cardiomiopatías/metabolismo , Conectina , Ecocardiografía , Electroforesis en Gel de Poliacrilamida , Exones/genética , Técnica del Anticuerpo Fluorescente , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM , Ratones , Ratones Noqueados , Microscopía Inmunoelectrónica , Proteínas Musculares/metabolismo , Proteínas Musculares/ultraestructura , Proteínas Quinasas/metabolismo , Proteínas Quinasas/ultraestructura , Sarcómeros/patología , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA