Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 564(7736): 444-448, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30518861

RESUMEN

Orthogonal ribosomes are unnatural ribosomes that are directed towards orthogonal messenger RNAs in Escherichia coli, through an altered version of the 16S ribosomal RNA of the small subunit1. Directed evolution of orthogonal ribosomes has provided access to new ribosomal function, and the evolved orthogonal ribosomes have enabled the encoding of multiple non-canonical amino acids into proteins2-4. The original orthogonal ribosomes shared the pool of 23S ribosomal RNAs, contained in the large subunit, with endogenous ribosomes. Selectively directing a new 23S rRNA to an orthogonal mRNA, by controlling the association between the orthogonal 16S rRNAs and 23S rRNAs, would enable the evolution of new function in the large subunit. Previous work covalently linked orthogonal 16S rRNA and a circularly permuted 23S rRNA to create orthogonal ribosomes with low activity5,6; however, the linked subunits in these ribosomes do not associate specifically with each other, and mediate translation by associating with endogenous subunits. Here we discover engineered orthogonal 'stapled' ribosomes (with subunits linked through an optimized RNA staple) with activities comparable to that of the parent orthogonal ribosome; they minimize association with endogenous subunits and mediate translation of orthogonal mRNAs through the association of stapled subunits. We evolve cells with genomically encoded stapled ribosomes as the sole ribosomes, which support cellular growth at similar rates to natural ribosomes. Moreover, we visualize the engineered stapled ribosome structure by cryo-electron microscopy at 3.0 Å, revealing how the staple links the subunits and controls their association. We demonstrate the utility of controlling subunit association by evolving orthogonal stapled ribosomes which efficiently polymerize a sequence of monomers that the natural ribosome is intrinsically unable to translate. Our work provides a foundation for evolving the rRNA of the entire orthogonal ribosome for the encoded cellular synthesis of non-canonical biological polymers7.


Asunto(s)
Evolución Molecular Dirigida , Escherichia coli , Biosíntesis de Proteínas , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura , Ribosomas/metabolismo , Ribosomas/ultraestructura , Secuencia de Bases , Reactivos de Enlaces Cruzados/química , Microscopía por Crioelectrón , Escherichia coli/clasificación , Escherichia coli/citología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Modelos Moleculares , Péptidos/genética , Péptidos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , ARN Ribosómico 16S/ultraestructura , ARN Ribosómico 23S/química , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/metabolismo , ARN Ribosómico 23S/ultraestructura , Subunidades Ribosómicas/química , Ribosomas/química , Ribosomas/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-30917982

RESUMEN

Staphylococcus aureus is a leading cause of infection in the United States, and due to the rapid development of resistance, new antibiotics are constantly needed. trans-Translation is a particularly promising antibiotic target because it is conserved in many bacterial species, is critical for bacterial survival, and is unique among prokaryotes. We have investigated the potential of KKL-40, a small-molecule inhibitor of trans-translation, and find that it inhibits both methicillin-susceptible and methicillin-resistant strains of S. aureus KKL-40 is also effective against Gram-positive pathogens, including a vancomycin-resistant strain of Enterococcus faecalis, Bacillus subtilis, and Streptococcus pyogenes, although its performance with Gram-negative pathogens is mixed. KKL-40 synergistically interacts with the human antimicrobial peptide LL-37, a member of the cathelicidin family, to inhibit S. aureus but not other antibiotics tested, including daptomycin, kanamycin, or erythromycin. KKL-40 is not cytotoxic to HeLa cells at concentrations that are 100-fold higher than the effective MIC. We also find that S. aureus develops minimal resistance to KKL-40 even after multiday passage at sublethal concentrations. Therefore, trans-translation inhibitors could be a particularly promising drug target against S. aureus, not only because of their ability to inhibit bacterial growth but also because of their potential to simultaneously render S. aureus more susceptible to host antimicrobial peptides.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/efectos de los fármacos , Línea Celular Tumoral , Sinergismo Farmacológico , Células HeLa , Humanos , Resistencia a la Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/microbiología , Catelicidinas
3.
Science ; 363(6428): 740-744, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30765567

RESUMEN

During trans-translation, transfer-messenger RNA (tmRNA) and small protein B (SmpB) together rescue ribosomes stalled on a truncated mRNA and tag the nascent polypeptide for degradation. We used cryo-electron microscopy to determine the structures of three key states of the tmRNA-SmpB-ribosome complex during trans translation at resolutions of 3.7 to 4.4 angstroms. The results show how tmRNA and SmpB act specifically on stalled ribosomes and how the circularized complex moves through the ribosome, enabling translation to switch from the old defective message to the reading frame on tmRNA.


Asunto(s)
Biosíntesis de Proteínas , ARN Bacteriano/química , Proteínas de Unión al ARN/química , Ribosomas/química , Microscopía por Crioelectrón , Escherichia coli , Movimiento (Física) , Thermus thermophilus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA