Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 22(41): 23998-24003, 2020 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33074272

RESUMEN

A ring-shaped carbon allotrope was recently synthesized for the first time, reinvigorating theoretical interest in this class of molecules. The dual π structure of these molecules allows for the possibility of novel electronic properties. In this work we use reduced density matrix theory to study the electronic structure and conductivity of cyclo[18]carbon and its boron nitride analogue, B9N9. The variational 2-RDM method replicates the experimental polyynic geometry of cyclo[18]carbon. We use a current-constrained 1-electron reduced density matrix (1-RDM) theory with Hartree-Fock molecular orbitals and energies to compute the molecular conductance in two cases: (1) conductance in the plane of the molecule and (2) conductance around the molecular ring as potentially driven by a magnetic field through the molecule's center. In-plane conductance is greater than conductance around the ring, but cyclo[18]carbon is slightly more conductive than B9N9 for both in-the-plane and in-the-ring conduction. The computed conductance per molecular orbital provides insight into how the orbitals-their energies and densities-drive the conduction.

2.
Phys Chem Chem Phys ; 21(23): 12620-12624, 2019 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-31155627

RESUMEN

In the effort to create ever smaller electronic devices, the idea of single molecule circuit elements has sparked the imagination of scientists for nearly fifty years. While traditional theories for non-equilibrium steady-state molecular conductivity like the non-equilibrium Green's function density functional theory determine the current from an applied voltage, the recently proposed current-constrained density-matrix theory computes the voltage from a current constraint on the molecule. In the present paper we extend the current-constrained density-matrix theory from its two-electron reduced density-matrix (2-RDM) formulation to a one-electron reduced density matrix (1-RDM) formulation that is applicable to Hartree-Fock, density functional, and tight-binding theories. We demonstrate the current-constrained 1-RDM method through the computation of the theoretical, intrinsic resistance of acenes and phenacenes.

3.
Phys Chem Chem Phys ; 17(38): 24917-24, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26343224

RESUMEN

Conformational ensembles of individual amino acid residues within model GxG peptides (x representing different amino acid residues) are dominated by a mixture of polyproline II (pPII) and ß-strand like conformations. We recently discovered rather substantial differences between the enthalpic and entropic contributions to this equilibrium for different amino acid residues. Isoleucine and valine exceed all other amino acid residues in terms of their rather large enthalpic stabilization and entropic destabilization of polyproline II. In order to shed light on these underlying physical mechanisms, we performed high-level DFT calculations to explore the energetics of four representative GxG peptides where x = alanine (A), leucine (L), valine (V), and isoleucine (I) in explicit water (10 H2O molecules with a polarizable continuum water model) and in vacuo. We found that the large energetic contributions to the stabilization of pPII result, to a major extent, from peptide-water, water-water interactions, and changes of the solvent self-energy. Differences between the peptide-solvent interaction energies of hydration in pPII and ß-strand peptides are particularly important for the pPII ⇌ ß equilibria of the more aliphatic peptides GIG and GLG. Furthermore, we performed a vibrational analysis of the four peptides in both conformations and discovered a rather substantial mixing between water motions and peptide vibrations below 700 cm(-1). We found that the respective vibrational entropies are substantially different for the considered conformations, and their contributions to the Gibbs/Helmholtz energy stabilize ß-strand conformations. Taken together, our results underscore the notion of the solvent being the predominant determinant of peptide (and protein) conformations in the unfolded state.


Asunto(s)
Aminoácidos/química , Péptidos/química , Agua/química , Oligopéptidos/química , Estructura Secundaria de Proteína , Desplegamiento Proteico , Termodinámica
4.
J Chem Theory Comput ; 14(1): 180-190, 2018 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-29202234

RESUMEN

We present a new analysis of exchange and dispersion effects for calculating halogen-bonding interactions in a wide variety of complex dimers (69 total) within the XB18 and XB51 benchmark sets. Contrary to previous work on these systems, we find that dispersion plays a more significant role than exact exchange in accurately calculating halogen-bonding interaction energies, which are further confirmed by extensive SAPT analyses. In particular, we find that even if the amount of exact exchange is nonempirically tuned to satisfy known DFT constraints, we still observe an overall improvement in predicting dissociation energies when dispersion corrections are applied, in stark contrast to previous studies ( Kozuch, S.; Martin, J. M. L. J. Chem. Theory Comput. 2013 , 9 , 1918 - 1931 ). In addition to these new analyses, we correct several (14) inconsistencies in the XB51 set, which is widely used in the scientific literature for developing and benchmarking various DFT methods. Together, these new analyses and revised benchmarks emphasize the importance of dispersion and provide corrected reference values that are essential for developing/parametrizing new DFT functionals, specifically for complex halogen-bonding interactions.

5.
J Chem Theory Comput ; 11(5): 2199-209, 2015 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-26574420

RESUMEN

We present a detailed analysis of several time-dependent DFT (TD-DFT) methods, including conventional hybrid functionals and two types of nonempirically tuned range-separated functionals, for predicting a diverse set of electronic excitations in DNA nucleobase monomers and dimers. This large and extensive set of excitations comprises a total of 50 different transitions (for each tested DFT functional) that includes several n → π and π → π* valence excitations, long-range charge-transfer excitations, and extended Rydberg transitions (complete with benchmark calculations from high-level EOM-CCSD(T) methods). The presence of localized valence excitations as well as extreme long-range charge-transfer excitations in these systems poses a serious challenge for TD-DFT methods that allows us to assess the importance of both short- and long-range exchange contributions for simultaneously predicting all of these various transitions. In particular, we find that functionals that do not have both short- and full long-range exchange components are unable to predict the different types of nucleobase excitations with the same accuracy. Most importantly, the current study highlights the importance of both short-range exchange and a nonempirically tuned contribution of long-range exchange for accurately predicting the diverse excitations in these challenging nucleobase systems.


Asunto(s)
ADN/química , Emparejamiento Base , ADN/metabolismo , Electrones , Conformación de Ácido Nucleico , Teoría Cuántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA