Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ann Rheum Dis ; 81(2): 214-224, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34844926

RESUMEN

OBJECTIVE: We aimed to understand the role of the transcriptional co-factor Yes-associated protein (Yap) in the molecular pathway underpinning the pathogenic transformation of synovial fibroblasts (SF) in rheumatoid arthritis (RA) to become invasive and cause joint destruction. METHODS: Synovium from patients with RA and mice with antigen-induced arthritis (AIA) was analysed by immunostaining and qRT-PCR. SF were targeted using Pdgfrα-CreER and Gdf5-Cre mice, crossed with fluorescent reporters for cell tracing and Yap-flox mice for conditional Yap ablation. Fibroblast phenotypes were analysed by flow cytometry, and arthritis severity was assessed by histology. Yap activation was detected using Yap-Tead reporter cells and Yap-Snail interaction by proximity ligation assay. SF invasiveness was analysed using matrigel-coated transwells. RESULTS: Yap, its binding partner Snail and downstream target connective tissue growth factor were upregulated in hyperplastic human RA and in mouse AIA synovium, with Yap detected in SF but not macrophages. Lineage tracing showed polyclonal expansion of Pdgfrα-expressing SF during AIA, with predominant expansion of the Gdf5-lineage SF subpopulation descending from the embryonic joint interzone. Gdf5-lineage SF showed increased expression of Yap and adopted an erosive phenotype (podoplanin+Thy-1 cell surface antigen-), invading cartilage and bone. Conditional ablation of Yap in Gdf5-lineage cells or Pdgfrα-expressing fibroblasts ameliorated AIA. Interleukin (IL)-6, but not tumour necrosis factor alpha (TNF-α) or IL-1ß, Jak-dependently activated Yap and induced Yap-Snail interaction. SF invasiveness induced by IL-6 stimulation or Snail overexpression was prevented by Yap knockdown, showing a critical role for Yap in SF transformation in RA. CONCLUSIONS: Our findings uncover the IL-6-Yap-Snail signalling axis in pathogenic SF in inflammatory arthritis.


Asunto(s)
Artritis Reumatoide/patología , Fibroblastos/patología , Membrana Sinovial/patología , Proteínas Señalizadoras YAP/metabolismo , Animales , Artritis Experimental/patología , Artritis Reumatoide/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Interleucina-6/metabolismo , Ratones , Transducción de Señal/fisiología , Factores de Transcripción de la Familia Snail/metabolismo , Membrana Sinovial/metabolismo
2.
Ann Rheum Dis ; 79(12): 1625-1634, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32963046

RESUMEN

OBJECTIVES: Osteophytes are highly prevalent in osteoarthritis (OA) and are associated with pain and functional disability. These pathological outgrowths of cartilage and bone typically form at the junction of articular cartilage, periosteum and synovium. The aim of this study was to identify the cells forming osteophytes in OA. METHODS: Fluorescent genetic cell-labelling and tracing mouse models were induced with tamoxifen to switch on reporter expression, as appropriate, followed by surgery to induce destabilisation of the medial meniscus. Contributions of fluorescently labelled cells to osteophytes after 2 or 8 weeks, and their molecular identity, were analysed by histology, immunofluorescence staining and RNA in situ hybridisation. Pdgfrα-H2BGFP mice and Pdgfrα-CreER mice crossed with multicolour Confetti reporter mice were used for identification and clonal tracing of mesenchymal progenitors. Mice carrying Col2-CreER, Nes-CreER, LepR-Cre, Grem1-CreER, Gdf5-Cre, Sox9-CreER or Prg4-CreER were crossed with tdTomato reporter mice to lineage-trace chondrocytes and stem/progenitor cell subpopulations. RESULTS: Articular chondrocytes, or skeletal stem cells identified by Nes, LepR or Grem1 expression, did not give rise to osteophytes. Instead, osteophytes derived from Pdgfrα-expressing stem/progenitor cells in periosteum and synovium that are descendants from the Gdf5-expressing embryonic joint interzone. Further, we show that Sox9-expressing progenitors in periosteum supplied hybrid skeletal cells to the early osteophyte, while Prg4-expressing progenitors from synovial lining contributed to cartilage capping the osteophyte, but not to bone. CONCLUSION: Our findings reveal distinct periosteal and synovial skeletal progenitors that cooperate to form osteophytes in OA. These cell populations could be targeted in disease modification for treatment of OA.


Asunto(s)
Osteoartritis/patología , Osteofito/patología , Periostio/patología , Células Madre/patología , Membrana Sinovial/patología , Animales , Linaje de la Célula , Ratones
3.
J Anat ; 232(4): 568-574, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29023763

RESUMEN

Thalidomide notoriously caused severe birth defects, particularly to the limbs, in those exposed in utero following maternal use of the drug to treat morning sickness. How the drug caused these birth defects remains unclear. Many theories have been proposed including actions on the forming blood vessels. However, thalidomide survivors also have altered nerve patterns and the drug is known for its neurotoxic actions in adults following prolonged use. We have previously shown that CPS49, an anti-angiogenic analog of thalidomide, causes a range of limb malformations in a time-sensitive manner in chicken embryos. Here we investigated whether CPS49 also is neurotoxic and whether effects on nerve development impact upon limb development. We found that CPS49 is neurotoxic, just like thalidomide, and can cause some neuronal loss late developing chicken limbs, but only when the limb is already innervated. However, CPS49 exposure does not cause defects in limb size when added to late developing chicken limbs. In contrast, in early limb buds which are not innervated, CPS49 exposure affects limb area significantly. To investigate in more detail the role of neurotoxicity and its impact on chicken limb development we inhibited nerve innervation at a range of developmental timepoints through using ß-bungarotoxin. We found that neuronal inhibition or ablation before, during or after limb outgrowth and innervation does not result in obvious limb cartilage patterning or number changes. We conclude that while CPS49 is neurotoxic, given the late innervation of the developing limb, and that neuronal inhibition/ablation throughout limb development does not cause similar limb patterning anomalies to those seen in thalidomide survivors, nerve defects are not the primary underlying cause of the severe limb patterning defects induced by CPS49/thalidomide.


Asunto(s)
Inhibidores de la Angiogénesis/toxicidad , Tipificación del Cuerpo/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Deformidades Congénitas de las Extremidades/inducido químicamente , Proyección Neuronal/efectos de los fármacos , Teratógenos/toxicidad , Talidomida/análogos & derivados , Animales , Bungarotoxinas/farmacología , Embrión de Pollo , Extremidades/embriología , Extremidades/inervación , Femenino , Esbozos de los Miembros/inervación , Ratones , Ratones Endogámicos C57BL , Síndromes de Neurotoxicidad , Talidomida/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA