RESUMEN
Background and Objectives: Lamellar ichthyosis is a rare skin disease characterized by large, dark brown plate-like scales on the entire body surface with minimum or no erythema. This phenotype is frequently associated with a mutation in the TGM1 gene, encoding the enzyme transglutaminase 1 which plays a catalytic role in the formation of the cornified cell envelop. The present study aimed to carry out clinical and genetic characterization of the autosomal recessive lamellar ichthyosis family from Balochistan. Materials and Methods: A consanguineous family with lamellar ichthyosis was enrolled from Balochistan, Pakistan. PCR amplification of all the exons and splice site junctions of the TGM1 gene followed by Sanger sequencing was performed on the genomic DNA. The identified variant was checked by In silico prediction tools to evaluate the effect of the variant on protein. Results: Sanger sequencing identified a homozygous nonsense variant c.131G >A (p.Trp44*) in the TGM1 gene that segregated in the autosomal recessive mode of inheritance in the family. The identified variant results in premature termination of transcribed mRNA and is predicted to cause a truncated or absent translation product transglutaminase-1 (TGase-1) accompanied by loss of catalytic activity, causing a severe clinical phenotype of lamellar ichthyosis in the patients. Conclusions: Here, we report a consanguineous lamellar ichthyosis family with a homozygous nonsense variant in the TGM1 gene. The variant is predicted as pathogenic by different In silico prediction tools.
Asunto(s)
Ictiosis Lamelar , Humanos , Ictiosis Lamelar/genética , Ictiosis Lamelar/patología , Mutación , Piel/patología , Fenotipo , ExonesRESUMEN
Fetal abnormalities are detected in 3% of all pregnancies and are responsible for approximately 20% of all perinatal deaths. Chromosomal microarray analysis (CMA) and exome sequencing (ES) are widely used in prenatal settings for molecular genetic diagnostics with variable diagnostic yields. In this study, we aimed to determine the diagnostic yield of trio-ES in detecting the cause of fetal abnormalities within a highly consanguineous population. In families with a history of congenital anomalies, a total of 119 fetuses with structural anomalies were recruited and DNA from invasive samples were used together with parental DNA samples for trio-ES and CMA. Data were analysed to determine possible underlying genetic disorders associated with observed fetal phenotypes. The cohort had a known consanguinity of 81%. Trio-ES led to diagnostic molecular genetic findings in 59 fetuses (with pathogenic/likely pathogenic variants) most with multisystem or renal abnormalities. CMA detected chromosomal abnormalities compatible with the fetal phenotype in another 7 cases. Monogenic ciliopathy disorders with an autosomal recessive inheritance were the predominant cause of multisystem fetal anomalies (24/59 cases, 40.7%) with loss of function variants representing the vast majority of molecular genetic abnormalities. Heterozygous de novo pathogenic variants were found in four fetuses. A total of 23 novel variants predicted to be associated with the phenotype were detected. Prenatal trio-ES and CMA detected likely causative molecular genetic defects in a total of 55% of families with fetal anomalies confirming the diagnostic utility of trio-ES and CMA as first-line genetic test in the prenatal diagnosis of multisystem fetal anomalies including ciliopathy syndromes.
Asunto(s)
Aberraciones Cromosómicas , Ciliopatías/genética , Feto/anomalías , Feto/fisiopatología , Variación Genética , Estudios de Cohortes , Consanguinidad , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas/métodos , Humanos , Análisis por Micromatrices , Fenotipo , Embarazo , Diagnóstico Prenatal/métodos , Secuenciación del ExomaRESUMEN
We report the results of clinical exome sequencing (CES) on >2,200 previously unpublished Saudi families as a first-tier test. The predominance of autosomal-recessive causes allowed us to make several key observations. We highlight 155 genes that we propose to be recessive, disease-related candidates. We report additional mutational events in 64 previously reported candidates (40 recessive), and these events support their candidacy. We report recessive forms of genes that were previously associated only with dominant disorders and that have phenotypes ranging from consistent with to conspicuously distinct from the known dominant phenotypes. We also report homozygous loss-of-function events that can inform the genetics of complex diseases. We were also able to deduce the likely causal variant in most couples who presented after the loss of one or more children, but we lack samples from those children. Although a similar pattern of mostly recessive causes was observed in the prenatal setting, the higher proportion of loss-of-function events in these cases was notable. The allelic series presented by the wealth of recessive variants greatly expanded the phenotypic expression of the respective genes. We also make important observations about dominant disorders; these observations include the pattern of de novo variants, the identification of 74 candidate dominant, disease-related genes, and the potential confirmation of 21 previously reported candidates. Finally, we describe the influence of a predominantly autosomal-recessive landscape on the clinical utility of rapid sequencing (Flash Exome). Our cohort's genotypic and phenotypic data represent a unique resource that can contribute to improved variant interpretation through data sharing.
Asunto(s)
Consanguinidad , Secuenciación del Exoma/métodos , Genes Recesivos , Enfermedades Genéticas Ligadas al Cromosoma X/epidemiología , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Predisposición Genética a la Enfermedad , Mutación , Niño , Estudios de Cohortes , Femenino , Homocigoto , Humanos , Masculino , Fenotipo , Embarazo , Arabia Saudita/epidemiologíaRESUMEN
Global developmental delay (GDD) is a lifelong disability that affects 1-3% of the population around the globe. It is phenotypically variable and highly heterogeneous in terms of the underlying genetics. Patients with GDD are intellectually disabled (ID) manifesting cognitive impairment and deficient adaptive behavior. Here, we investigated a two-looped consanguineous family segregating severe ID, seizure, and progressive microcephaly. Magnetic resonance imaging (MRI) of the brain showed mild brain atrophy and myelination defect. Whole exome sequencing (WES) was performed on the DNA samples of two patients and a novel homozygous missense variant (Chr11:g0.93528085; NM_004268.5_c.871T > C; p. Trp291Gly) was identified in the MED17 gene. Sanger sequencing revealed that the identified variant is heterozygous in both parents and healthy siblings. This variant is conserved among different species, causes a non-conserved amino acid change, and is predicted deleterious by various in silico tools. The variant is not reported in population variant databases. MED17 (OMIM: 613668) encodes for the mediator of RNA polymerase II transcription complex subunit 17. Structure modeling of MED17 protein revealed that Trp291 is involved in different inter-helical interactions, providing structural stability. Replacement of Trp291Gly, a less hydrophobic amino acid loses the inter-helical interaction leading to a perturb variant of MED17 protein.
Asunto(s)
Microcefalia , Niño , Humanos , Microcefalia/genética , Linaje , Encéfalo , Fenotipo , Homocigoto , Aminoácidos/genética , Discapacidades del Desarrollo/genética , Complejo Mediador/genéticaRESUMEN
Autism and speech and language deficits are predominantly found in boys, however the causative mechanisms for this sex bias are unknown. Human FOXP1 is associated with autism, intellectual disability and speech and language deficits. Its closely related family member FOXP2 is involved in speech and language disorder and Foxp2 deficient mice have demonstrated an absence of ultrasonic vocalizations (USVs). Since Foxp1 and Foxp2 form heterodimers for transcriptional regulation, we investigated USV in neonatal brain-specific Foxp1 KO mice. Foxp1 KO pups had strongly reduced USV and lacked the sex-specific call rate from WT pups, indicating that Foxp1 is essential for normal USV. As expression differences of Foxp1 or Foxp2 could explain the sex-dimorphic vocalization in WT animals, we quantified both proteins in the striatum and cortex at P7.5 and detected a sex-specific expression of Foxp2 in the striatum. We further analyzed Foxp1 and Foxp2 expression in the striatum and cortex of CD1 mice at different embryonic and postnatal stages and observed sex differences in both genes at E17.5 and P7.5. Sex hormones, especially androgens are known to play a crucial role in the sexual differentiation of vocalizations in many vertebrates. We show that Foxp1 and the androgen receptor are co-expressed in striatal medium spiny neurons and that brain-specific androgen receptor KO (ArNesCre) mice exhibit reduced Foxp1 expression in the striatum at E17.5 and P7.5 and an increased Foxp2 level in the cortex at P7.5. Thus, androgens may contribute to sex-specific differences in Foxp1 and Foxp2 expression and USV.
Asunto(s)
Apraxias/genética , Trastorno Autístico/genética , Factores de Transcripción Forkhead/genética , Discapacidad Intelectual/genética , Receptores Androgénicos/genética , Proteínas Represoras/genética , Animales , Apraxias/metabolismo , Apraxias/fisiopatología , Trastorno Autístico/metabolismo , Trastorno Autístico/fisiopatología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Desarrollo Embrionario/genética , Factores de Transcripción Forkhead/biosíntesis , Regulación del Desarrollo de la Expresión Génica , Humanos , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/fisiopatología , Masculino , Ratones , Ratones Noqueados , Proteínas Represoras/biosíntesis , Caracteres Sexuales , Ondas Ultrasónicas , Vocalización Animal/fisiologíaRESUMEN
BACKGROUND: Intellectual disability (ID) is a neurodevelopmental disorder affecting 1%-3% of the population worldwide. It is characterised by high phenotypic and genetic heterogeneity and in most cases the underlying cause of the disorder is unknown. In our study we investigated a large consanguineous family from Baluchistan, Pakistan, comprising seven affected individuals with a severe form of autosomal recessive ID (ARID) and epilepsy, to elucidate a putative genetic cause. METHODS AND RESULTS: Whole exome sequencing (WES) of a trio, including a child with ID and epilepsy and its healthy parents that were part of this large family, revealed a homozygous missense variant p.R53Q in the lectin mannose-binding 2-like (LMAN2L) gene. This homozygous variant was co-segregating in the family with the phenotype of severe ID and infantile epilepsy; unaffected family members were heterozygous variant carriers. The variant was predicted to be pathogenic by five different in silico programmes and further three-dimensional structure modelling of the protein suggests that variant p.R53Q may impair protein-protein interaction. LMAN2L (OMIM: 609552) encodes for the lectin, mannose-binding 2-like protein which is a cargo receptor in the endoplasmic reticulum important for glycoprotein transport. Genome-wide association studies have identified an association of LMAN2L to different neuropsychiatric disorders. CONCLUSION: This is the first report linking LMAN2L to a phenotype of severe ARID and seizures, indicating that the deleterious homozygous p.R53Q variant very likely causes the disorder.
Asunto(s)
Discapacidad Intelectual/genética , Lectinas/química , Lectinas/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Mutación Missense , Preescolar , Consanguinidad , Epilepsia/genética , Exoma , Femenino , Genes Recesivos , Homocigoto , Humanos , Lectinas/metabolismo , Masculino , Proteínas de Transporte de Membrana/metabolismo , Pakistán , LinajeRESUMEN
We have used single-nucleotide polymorphism microarray genotyping and homozygosity-by-descent (HBD) mapping followed by Sanger sequencing or whole-exome sequencing (WES) to identify causative mutations in three consanguineous families with intellectual disability (ID) related to thyroid dyshormonogenesis (TDH). One family was found to have a shared HBD region of 12.1 Mb on 8q24.21-q24.23 containing 36 coding genes, including the thyroglobulin gene, TG. Sanger sequencing of TG identified a homozygous nonsense mutation Arg2336*, which segregated with the phenotype in the family. A second family showed several HBD regions, including 6.0 Mb on 2p25.3-p25.2. WES identified a homozygous nonsense mutation, Glu596*, in the thyroid peroxidase gene, TPO. WES of a mother/father/proband trio from a third family revealed a homozygous missense mutation, Arg412His, in TPO. Mutations in TG and TPO are very rarely associated with ID, mainly because TDH is generally detectable and treatable. However, in populations where resources for screening and detection are limited, and especially where consanguineous marriages are common, mutations in genes involved in thyroid function may also be causes of ID, and as TPO and TG mutations are the most common genetic causes of TDH, these are also likely to be relatively common causes of ID.
Asunto(s)
Hipotiroidismo Congénito/diagnóstico , Hipotiroidismo Congénito/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Yoduro Peroxidasa/genética , Mutación , Tiroglobulina/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Niño , Preescolar , Consanguinidad , Análisis Mutacional de ADN , Femenino , Genes Recesivos , Estudios de Asociación Genética , Genotipo , Humanos , Lactante , Masculino , LinajeRESUMEN
CSMD1 (Cub and Sushi Multiple Domains 1) is a well-recognized regulator of the complement cascade, an important component of the innate immune response. CSMD1 is highly expressed in the central nervous system (CNS) where emergent functions of the complement pathway modulate neural development and synaptic activity. While a genetic risk factor for neuropsychiatric disorders, the role of CSMD1 in neurodevelopmental disorders is unclear. Through international variant sharing, we identified inherited biallelic CSMD1 variants in eight individuals from six families of diverse ancestry who present with global developmental delay, intellectual disability, microcephaly, and polymicrogyria. We modeled CSMD1 loss-of-function (LOF) pathogenesis in early-stage forebrain organoids differentiated from CSMD1 knockout human embryonic stem cells (hESCs). We show that CSMD1 is necessary for neuroepithelial cytoarchitecture and synchronous differentiation. In summary, we identified a critical role for CSMD1 in brain development and biallelic CSMD1 variants as the molecular basis of a previously undefined neurodevelopmental disorder.
Asunto(s)
Discapacidad Intelectual , Proteínas de la Membrana , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Femenino , Masculino , Trastornos del Neurodesarrollo/genética , Alelos , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/patología , Niño , Preescolar , Diferenciación Celular/genética , Proteínas Supresoras de TumorRESUMEN
CONTEXT: RET p.V804M is classified as a moderate risk mutation for familial medullary thyroid cancer (FMTC). There is a significant controversy on the management of patients carrying this mutation. We describe a family incidentally discovered to have this mutation and review the literature on RET p.V804M mutation. RESULTS: The proband was born to first-degree relative parents. He was noticed to have hypertrophy of some parts of the body and vascular skin changes. Whole-exome sequencing of DNA extracted from a skin biopsy showed a mutation in the PIK3CA (c.3132T>G, p.ASN1044LYS). This variant was not found in DNA extracted from blood. This confirmed the diagnosis of CLOVES syndrome (Congenital Lipomatous Overgrowth, Vascular malformations, Epidermal nevi and Scoliosis, skeletal or spinal anomalies). Another incidentally found mutation in the skin biopsy and blood sample was RET p.V804M. Although there was no family history of MTC or MEN 2 syndromes, family screening revealed RET p.V804M mutation and FMTC in the proband's father, paternal grandmother, one sister, and one aunt. There was significant interfamilial heterogeneity in the age of presentation and pathology. A review of literature showed that RET p.V804M mutation is a moderate risk mutation associated with late-onset FMTC, usually at middle to old age. CONCLUSION: Despite the controversy and the heterogeneous presentation of patients with RET p.V804M mutation, our study and review of the literature suggest that this seemingly "low" risk mutation is associated with late-onset but potentially aggressive MTC. This indicates the need for follow-up and timely intervention based on calcitonin level elevation.
Asunto(s)
Carcinoma Medular , Neoplasia Endocrina Múltiple Tipo 2a , Neoplasias de la Tiroides , Carcinoma Medular/congénito , Mutación de Línea Germinal , Humanos , Mutación , Linaje , Proteínas Proto-Oncogénicas c-ret/genética , Neoplasias de la Tiroides/diagnóstico , Neoplasias de la Tiroides/genéticaRESUMEN
Autism spectrum disorders (ASD) have a higher prevalence in male individuals compared to females, with a ratio of affected boys compared to girls of 4:1 for ASD and 11:1 for Asperger syndrome. Mutations in the SHANK genes (comprising SHANK1, SHANK2 and SHANK3) coding for postsynaptic scaffolding proteins have been tightly associated with ASD. As early brain development is strongly influenced by sex hormones, we investigated the effect of dihydrotestosterone (DHT) and 17ß-estradiol on SHANK expression in a human neuroblastoma cell model. Both sex hormones had a significant impact on the expression of all three SHANK genes, which could be effectively blocked by androgen and estrogen receptor antagonists. In neuron-specific androgen receptor knock-out mice (Ar NesCre), we found a nominal significant reduction of all Shank genes at postnatal day 7.5 in the cortex. In the developing cortex of wild-type (WT) CD1 mice, a sex-differential protein expression was identified for all Shanks at embryonic day 17.5 and postnatal day 7.5 with significantly higher protein levels in male compared to female mice. Together, we could show that SHANK expression is influenced by sex hormones leading to a sex-differential expression, thus providing novel insights into the sex bias in ASD.
RESUMEN
ARL13B encodes for the ADP-ribosylation factor-like 13B GTPase, which is required for normal cilia structure and Sonic hedgehog (Shh) signaling. Disruptions in cilia structure or function lead to a class of human disorders called ciliopathies. Joubert syndrome is characterized by a wide spectrum of symptoms, including a variable degree of intellectual disability, ataxia, and ocular abnormalities. Here we report a novel homozygous missense variant c.[223G>A] (p.(Gly75Arg) in the ARL13B gene, which was identified by whole-exome sequencing of a trio from a consanguineous family with multiple-affected individuals suffering from intellectual disability, ataxia, ocular defects, and epilepsy. The same variant was also identified in a second family. We saw a striking difference in the severity of ataxia between affected male and female individuals in both families. Both ARL13B and ARL13B-c.[223G>A] (p.(Gly75Arg) expression rescued the cilia length and Shh defects displayed by Arl13b hennin (null) cells, indicating that the variant did not disrupt either ARL13B function. In contrast, ARL13B-c.[223G>A] (p.(Gly75Arg) displayed a marked loss of ARL3 guanine nucleotide-exchange factor activity, with retention of its GTPase activities, highlighting the correlation between its loss of function as an ARL3 guanine nucleotide-exchange factor and Joubert syndrome.