Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
FASEB J ; 31(12): 5399-5408, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28821634

RESUMEN

Exosomes are endosome-derived nanovesicles that are involved in cellular communication and signaling. Exosomes are produced by epithelial cells and are found in biologic fluids including blood and urine. The packaged material within exosomes includes proteins and lipids, but the molecular comparison within exosome subtypes is largely unknown. The purpose of this study was to investigate differences between exosomes derived from the apical plasma membrane and basolateral plasma membrane of polarized murine cortical collecting duct principal cells. Nanoparticle tracking analysis showed that the size and concentration of apical and basolateral exosomes remained relatively stable across 3 different temperatures (23, 37, and 42°C). Liquid chromatography-tandem mass spectrometry analysis revealed marked differences between the proteins packaged within the two types of exosomes from the same cells. Several proteins expressed at the inner leaflet of the plasma membrane, including α-actinin-1, moesin, 14-3-3 protein ζ/δ, annexin A1/A3/A4/A5/A6, clathrin heavy chain 1, glyceraldehyde-3-phosphate dehydrogenase, α-enolase, filamin-A, and heat shock protein 90, were identified in samples of apical plasma membrane-derived exosomes, but not in basolateral plasma membrane exosomes from mouse cortical collecting duct cells. In addition to differences at the protein level, mass spectrometry-based shotgun lipidomics analysis showed significant differences in the lipid classes and fatty acid composition of the two types of exosomes. We found higher levels of sphingomyelin and lower levels of cardiolipin, among other phospholipids in the apical plasma membrane compared to the basolateral plasma membrane exosomes. The molecular analyses of exosome subtypes presented herein will contribute to our understanding of exosome biogenesis, and the results may have potential implications for biomarker discovery.-Dang, V. D., Jella, K. K., Ragheb, R. R. T., Denslow, N. D., Alli, A. A. Lipidomic and proteomic analysis of exosomes from mouse cortical collecting duct cells.


Asunto(s)
Exosomas/metabolismo , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/metabolismo , Proteómica , Proteínas 14-3-3/metabolismo , Animales , Anexina A1/metabolismo , Anexina A3/metabolismo , Western Blotting , Cardiolipinas/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Cromatografía Liquida , Electroforesis en Gel de Poliacrilamida , Ratones , Proteínas de Microfilamentos/metabolismo , Nanopartículas , Fosfolípidos/metabolismo , Esfingomielinas/metabolismo , Espectrometría de Masas en Tándem , Temperatura
2.
J Neurooncol ; 121(3): 441-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25403507

RESUMEN

Current therapy for glioblastoma multiforme (GBM) is largely ineffective, with nearly universal tumor recurrence. The failure of current therapy is primarily due to the lack of approaches for the efficient delivery of therapeutics to diffuse tumors in the brain. In our prior study, we developed brain-penetrating nanoparticles that are capable of penetrating brain tissue and distribute over clinically relevant volumes when administered via convection-enhanced delivery (CED). We demonstrated that these particles are capable of efficient delivery of chemotherapeutics to diffuse tumors in the brain, indicating that they may serve as a groundbreaking approach for the treatment of GBM. In the original study, nanoparticles in the brain were imaged using positron emission tomography (PET). However, clinical translation of this delivery platform can be enabled by engineering a non-invasive detection modality using magnetic resonance imaging (MRI). For this purpose, we developed chemistry to incorporate superparamagnetic iron oxide (SPIO) into the brain-penetrating nanoparticles. We demonstrated that SPIO-loaded nanoparticles, which retain the same morphology as nanoparticles without SPIO, have an excellent transverse (T(2)) relaxivity. After CED, the distribution of nanoparticles in the brain (i.e., in the vicinity of injection site) can be detected using MRI and the long-lasting signal attenuation of SPIO-loaded brain-penetrating nanoparticles lasted over a one-month timecourse. Development of these nanoparticles is significant as, in future clinical applications, co-administration of SPIO-loaded nanoparticles will allow for intraoperative monitoring of particle distribution in the brain to ensure drug-loaded nanoparticles reach tumors as well as for monitoring the therapeutic benefit with time and to evaluate tumor relapse patterns.


Asunto(s)
Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Ácido Láctico/administración & dosificación , Imagen por Resonancia Magnética/métodos , Nanopartículas/administración & dosificación , Neuroimagen/métodos , Ácido Poliglicólico/administración & dosificación , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Convección , Compuestos Férricos , Glioblastoma/tratamiento farmacológico , Humanos , Procesamiento de Imagen Asistido por Computador , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas , Ratas Sprague-Dawley
3.
Magn Reson Med ; 70(6): 1748-60, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23401099

RESUMEN

PURPOSE: Combined therapeutic and diagnostic agents, "theranostics" are emerging valuable tools for noninvasive imaging and drug delivery. Here, we report on a solid biodegradable multifunctional nanoparticle that combines both features. METHODS: Poly(lactide-co-glycolide) nanoparticles were engineered to confine superparamagnetic iron oxide contrast for magnetic resonance imaging while enabling controlled drug delivery and targeting to specific cells. To achieve this dual modality, fatty acids were used as anchors for surface ligands and for encapsulated iron oxide in the polymer matrix. RESULTS: We demonstrate that fatty acid modified iron oxide prolonged retention of the contrast agent in the polymer matrix during degradative release of drug. Antibody-fatty acid surface modification facilitated cellular targeting and subsequent internalization in cells while inducing clustering of encapsulated fatty-acid modified superparamagnetic iron oxide during particle formulation. This induced clustered confinement led to an aggregation within the nanoparticle and, hence, higher transverse relaxivity, r2 , (294 mM(-1) s(-1) ) compared with nanoparticles without fatty-acid ligands (160 mM(-1) s(-1) ) and higher than commercially available superparamagnetic iron oxide nanoparticles (89 mM(-1) s(-1) ). CONCLUSION: Clustering of superparamagnetic iron oxide in poly(lactide-co-glycolide) did not affect the controlled release of encapsulated drugs such as methotrexate or clodronate and their subsequent pharmacological activity, thus highlighting the full theranostic capability of our system.


Asunto(s)
Implantes Absorbibles , Dextranos/química , Macrófagos/química , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/química , Melanoma Experimental/química , Nanocápsulas/química , Animales , Células Cultivadas , Dextranos/uso terapéutico , Difusión , Composición de Medicamentos/métodos , Nanopartículas de Magnetita/uso terapéutico , Ensayo de Materiales , Melanoma Experimental/diagnóstico , Melanoma Experimental/terapia , Ratones , Nanocápsulas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA