Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nucleic Acids Res ; 50(5): 2651-2666, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35137208

RESUMEN

Selection of the appropriate DNA double-strand break (DSB) repair pathway is decisive for genetic stability. It is proposed to act according to two steps: 1-canonical nonhomologous end-joining (C-NHEJ) versus resection that generates single-stranded DNA (ssDNA) stretches; 2-on ssDNA, gene conversion (GC) versus nonconservative single-strand annealing (SSA) or alternative end-joining (A-EJ). Here, we addressed the mechanisms by which RAD51 regulates this second step, preventing nonconservative repair in human cells. Silencing RAD51 or BRCA2 stimulated both SSA and A-EJ, but not C-NHEJ, validating the two-step model. Three different RAD51 dominant-negative forms (DN-RAD51s) repressed GC and stimulated SSA/A-EJ. However, a fourth DN-RAD51 repressed SSA/A-EJ, although it efficiently represses GC. In living cells, the three DN-RAD51s that stimulate SSA/A-EJ failed to load efficiently onto damaged chromatin and inhibited the binding of endogenous RAD51, while the fourth DN-RAD51, which inhibits SSA/A-EJ, efficiently loads on damaged chromatin. Therefore, the binding of RAD51 to DNA, rather than its ability to promote GC, is required for SSA/A-EJ inhibition by RAD51. We showed that RAD51 did not limit resection of endonuclease-induced DSBs, but prevented spontaneous and RAD52-induced annealing of complementary ssDNA in vitro. Therefore, RAD51 controls the selection of the DSB repair pathway, protecting genome integrity from nonconservative DSB repair through ssDNA occupancy, independently of the promotion of CG.


Asunto(s)
Roturas del ADN de Doble Cadena , Recombinasa Rad51 , Cromatina , Reparación del ADN por Unión de Extremidades , Reparación del ADN , ADN de Cadena Simple/genética , Humanos , Recombinasa Rad51/metabolismo
2.
PLoS Genet ; 12(5): e1006007, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27135742

RESUMEN

Replications forks are routinely hindered by different endogenous stresses. Because homologous recombination plays a pivotal role in the reactivation of arrested replication forks, defects in homologous recombination reveal the initial endogenous stress(es). Homologous recombination-defective cells consistently exhibit a spontaneously reduced replication speed, leading to mitotic extra centrosomes. Here, we identify oxidative stress as a major endogenous source of replication speed deceleration in homologous recombination-defective cells. The treatment of homologous recombination-defective cells with the antioxidant N-acetyl-cysteine or the maintenance of the cells at low O2 levels (3%) rescues both the replication fork speed, as monitored by single-molecule analysis (molecular combing), and the associated mitotic extra centrosome frequency. Reciprocally, the exposure of wild-type cells to H2O2 reduces the replication fork speed and generates mitotic extra centrosomes. Supplying deoxynucleotide precursors to H2O2-exposed cells rescued the replication speed. Remarkably, treatment with N-acetyl-cysteine strongly expanded the nucleotide pool, accounting for the replication speed rescue. Remarkably, homologous recombination-defective cells exhibit a high level of endogenous reactive oxygen species. Consistently, homologous recombination-defective cells accumulate spontaneous γH2AX or XRCC1 foci that are abolished by treatment with N-acetyl-cysteine or maintenance at 3% O2. Finally, oxidative stress stimulated homologous recombination, which is suppressed by supplying deoxynucleotide precursors. Therefore, the cellular redox status strongly impacts genome duplication and transmission. Oxidative stress should generate replication stress through different mechanisms, including DNA damage and nucleotide pool imbalance. These data highlight the intricacy of endogenous replication and oxidative stresses, which are both evoked during tumorigenesis and senescence initiation, and emphasize the importance of homologous recombination as a barrier against spontaneous genetic instability triggered by the endogenous oxidative/replication stress axis.


Asunto(s)
Replicación del ADN/genética , Recombinación Homóloga/genética , Mitosis/genética , Estrés Oxidativo/genética , Acetilcisteína/farmacología , Animales , Células CHO , Centrosoma/efectos de los fármacos , Cricetulus , Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Redes Reguladoras de Genes/genética , Histonas/genética , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo/efectos de los fármacos , Imagen Individual de Molécula , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
3.
Cell Death Differ ; 30(5): 1349-1365, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36869180

RESUMEN

Cells are inevitably challenged by low-level/endogenous stresses that do not arrest DNA replication. Here, in human primary cells, we discovered and characterized a noncanonical cellular response that is specific to nonblocking replication stress. Although this response generates reactive oxygen species (ROS), it induces a program that prevents the accumulation of premutagenic 8-oxoguanine in an adaptive way. Indeed, replication stress-induced ROS (RIR) activate FOXO1-controlled detoxification genes such as SEPP1, catalase, GPX1, and SOD2. Primary cells tightly control the production of RIR: They are excluded from the nucleus and are produced by the cellular NADPH oxidases DUOX1/DUOX2, whose expression is controlled by NF-κB, which is activated by PARP1 upon replication stress. In parallel, inflammatory cytokine gene expression is induced through the NF-κB-PARP1 axis upon nonblocking replication stress. Increasing replication stress intensity accumulates DNA double-strand breaks and triggers the suppression of RIR by p53 and ATM. These data underline the fine-tuning of the cellular response to stress that protects genome stability maintenance, showing that primary cells adapt their responses to replication stress severity.


Asunto(s)
NADPH Oxidasas , FN-kappa B , Humanos , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Citocinas/genética , Inestabilidad Genómica
4.
Genes (Basel) ; 11(4)2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32283785

RESUMEN

Complete and accurate DNA replication is essential to genome stability maintenance during cellular division. However, cells are routinely challenged by endogenous as well as exogenous agents that threaten DNA stability. DNA breaks and the activation of the DNA damage response (DDR) arising from endogenous replication stress have been observed at pre- or early stages of oncogenesis and senescence. Proper detection and signalling of DNA damage are essential for the autonomous cellular response in which the DDR regulates cell cycle progression and controls the repair machinery. In addition to this autonomous cellular response, replicative stress changes the cellular microenvironment, activating the innate immune response that enables the organism to protect itself against the proliferation of damaged cells. Thereby, the recent descriptions of the mechanisms of the pro-inflammatory response activation after replication stress, DNA damage and DDR defects constitute important conceptual novelties. Here, we review the links of replication, DNA damage and DDR defects to innate immunity activation by pro-inflammatory paracrine effects, highlighting the implications for human syndromes and immunotherapies.


Asunto(s)
Citocinas/metabolismo , Daño del ADN , Inestabilidad Genómica , Inmunidad Innata/inmunología , Inflamación/inmunología , Animales , Reparación del ADN , Humanos , Inmunidad Innata/genética , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación
5.
Plant Mol Biol ; 70(1-2): 123-37, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19199092

RESUMEN

The Ogura cytoplasmic male sterility causing protein, ORF138, was found to be part of a complex with an apparent size of over 750 kDa in the inner membrane of mitochondria of sterile plants. ORF138 did not colocalize with any of the oxidative phosphorylation complexes, nor did its presence modify their apparent size or amount, compared to samples from fertile isogenic plants. We attempted to detect potential proteins or nucleic acids that could be involved in the large ORF138 complex by 2D PAGE, immunoprecipitation and nuclease treatments of native extracts. All our results suggest that the ORF138 protein is the main, if not only, component of this large complex. The capacities of complexes I, II, IV, and ATP synthase were identical in samples from sterile and fertile plants. Isolated mitochondria from sterile plants showed a higher oxygen consumption than those from fertile plants. In vivo respiration measurements suggest that the difference in O(2) consumption measured at the organelle level is compensated at the cell/tissue level, completely in leaves, but only partially in male reproductive organs.


Asunto(s)
Brassica rapa/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Infertilidad Vegetal , Proteínas de Plantas/metabolismo , Brassica rapa/genética , Electroforesis en Gel de Poliacrilamida , Proteínas Mitocondriales/genética , Fosforilación Oxidativa , Consumo de Oxígeno , Proteínas de Plantas/genética
6.
Mol Cell Oncol ; 2(1): e968020, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-27308383

RESUMEN

DNA double-strand breaks (DSBs) are highly lethal lesions that jeopardize genome integrity. However, DSBs are also used to generate diversity during the physiological processes of meiosis or establishment of the immune repertoire. Therefore, DSB repair must be tightly controlled. Two main strategies are used to repair DSBs: homologous recombination (HR) and non-homologous end joining (NHEJ). HR is generally considered to be error-free, whereas NHEJ is considered to be error-prone. However, recent data challenge these assertions. Here, we present the molecular mechanisms involved in HR and NHEJ and the recently described alternative end-joining mechanism, which is exclusively mutagenic. Whereas NHEJ is not intrinsically error-prone but adaptable, HR has the intrinsic ability to modify the DNA sequence. Importantly, in both cases the initial structure of the DNA impacts the outcome. Finally, the consequences and applications of these repair mechanisms are discussed. Both HR and NHEJ are double-edged swords, essential for maintenance of genome stability and diversity but also able to generate genome instability.

7.
PLoS One ; 9(9): e108123, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25247923

RESUMEN

The absence of Tsa1, a key peroxiredoxin that scavenges H2O2 in Saccharomyces cerevisiae, causes the accumulation of a broad spectrum of mutations. Deletion of TSA1 also causes synthetic lethality in combination with mutations in RAD51 or several key genes involved in DNA double-strand break repair. In the present study, we propose that the accumulation of reactive oxygen species (ROS) is the primary cause of genome instability of tsa1Δ cells. In searching for spontaneous suppressors of synthetic lethality of tsa1Δ rad51Δ double mutants, we identified that the loss of thioredoxin reductase Trr1 rescues their viability. The trr1Δ mutant displayed a Can(R) mutation rate 5-fold lower than wild-type cells. Additional deletion of TRR1 in tsa1Δ mutant reduced substantially the Can(R) mutation rate of tsa1Δ strain (33-fold), and to a lesser extent, of rad51Δ strain (4-fold). Loss of Trr1 induced Yap1 nuclear accumulation and over-expression of a set of Yap1-regulated oxido-reductases with antioxidant properties that ultimately re-equilibrate intracellular redox environment, reducing substantially ROS-associated DNA damages. This trr1Δ -induced effect was largely thioredoxin-dependent, probably mediated by oxidized forms of thioredoxins, the primary substrates of Trr1. Thioredoxin Trx1 and Trx2 were constitutively and strongly oxidized in the absence of Trr1. In trx1Δ trx2Δ cells, Yap1 was only moderately activated; consistently, the trx1Δ trx2Δ double deletion failed to efficiently rescue the viability of tsa1Δ rad51Δ. Finally, we showed that modulation of the dNTP pool size also influences the formation of spontaneous mutation in trr1Δ and trx1Δ trx2Δ strains. We present a tentative model that helps to estimate the respective impact of ROS level and dNTP concentration in the generation of spontaneous mutations.


Asunto(s)
Inestabilidad Genómica , Mutación , Peroxidasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Tiorredoxina Reductasa 1/genética , Daño del ADN/genética , Reparación del ADN/genética , Peroxidasas/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiorredoxina Reductasa 1/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Cancer Res ; 68(4): 1055-63, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18281480

RESUMEN

The peroxiredoxins (Prx) are conserved antioxidant proteins that use cysteine as the primary site of oxidation during the reduction of peroxides. Many organisms have more than one isoform of Prx. Deletion of TSA1, one of five Prxs in yeast Saccharomyces cerevisiae, results in accumulation of a broad spectrum of mutations including gross chromosomal rearrangements. Deletion of TSA1 is synthetically lethal with mutations in RAD6 and several key genes involved in DNA double-strand break repair. Here, we have examined the function of human PrxI and PrxII, which share a high degree of sequence identity with Tsa1, by expressing them in S. cerevisiae cells under the control of the native TSA1 promoter. We found that expression of PrxI, but not PrxII, was capable of complementing a tsa1Delta mutant for a variety of defects including genome instability, the synthetic lethality observed in rad6 Delta tsa1Delta and rad51 Delta tsa1Delta double mutants, and mutagen sensitivity. Moreover, expression of either Tsa1 or PrxI prevented Bax-induced cell death. These data indicate that PrxI is an orthologue of Tsa1. PrxI and Tsa1 seem to act on the same substrates in vivo and share similar mechanisms of function. The observation that PrxI is involved in suppressing genome instability and protecting against cell death potentially provides a better understanding of the consequences of PrxI dysfunction in human cells. The S. cerevisiae system described here could provide a sensitive tool to uncover the mechanisms that underlie the function of human Prxs.


Asunto(s)
Peroxidasas/genética , Peroxirredoxinas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Inestabilidad Genómica , Proteínas de Homeodominio , Humanos , Peróxido de Hidrógeno/farmacología , Datos de Secuencia Molecular , Mutación , Peroxirredoxinas/biosíntesis , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo
9.
Proc Natl Acad Sci U S A ; 104(23): 9747-52, 2007 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-17535927

RESUMEN

The absence of Tsa1, a key peroxiredoxin that functions to scavenge H(2)O(2) in Saccharomyces cerevisiae, causes the accumulation of a broad spectrum of mutations including gross chromosomal rearrangements (GCRs). Deletion of TSA1 also causes synthetic lethality in combination with mutations in RAD6 and several key genes involved in DNA double-strand break repair. In the present study we investigated the causes of GCRs and cell death in these mutants. tsa1-associated GCRs were independent of the activity of the translesion DNA polymerases zeta, eta, and Rev1. Anaerobic growth reduced substantially GCR rates of WT and tsa1 mutants and restored the viability of tsa1 rad6, tsa1 rad51, and tsa1 mre11 double mutants. Anaerobic growth also reduced the GCR rate of rad27, pif1, and rad52 mutants, indicating a role of reactive oxygen species in GCR formation in these mutants. In addition, deletion of TSA1 or H(2)O(2) treatment of WT cells resulted in increased formation of Rad52 foci, sites of repair of multiple DNA lesions. H(2)O(2) treatment also induced the GCRs. Our results provide in vivo evidence that oxygen metabolism and reactive oxygen species are important sources of DNA damages that can lead to GCRs and lethal effects in S. cerevisiae.


Asunto(s)
Inestabilidad Cromosómica/fisiología , Daño del ADN , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/metabolismo , Anaerobiosis , Inestabilidad Cromosómica/efectos de los fármacos , Eliminación de Gen , Genes Fúngicos/genética , Peróxido de Hidrógeno/toxicidad , Microscopía Fluorescente , Mutación/genética , Peroxidasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA