Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Chem Rec ; 22(7): e202100319, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35189015

RESUMEN

Recently, nanostructured carbon-based soft bioelectronics and biosensors have received tremendous attention due to their outstanding physical and chemical properties. The ultrahigh specific surface area, high flexibility, lightweight, high electrical conductivity, and biocompatibility of 1D and 2D nanocarbons, such as carbon nanotubes (CNT) and graphene, are advantageous for bioelectronics applications. These materials improve human life by delivering therapeutic advancements in gene, tumor, chemo, photothermal, immune, radio, and precision therapies. They are also utilized in biosensing platforms, including optical and electrochemical biosensors to detect cholesterol, glucose, pathogenic bacteria (e. g., coronavirus), and avian leucosis virus. This review summarizes the most recent advancements in bioelectronics and biosensors by exploiting the outstanding characteristics of nanocarbon materials. The synthesis and biocompatibility of nanocarbon materials are briefly discussed. In the following sections, applications of graphene and CNTs for different therapies and biosensing are elaborated. Finally, the key challenges and future perspectives of nanocarbon materials for biomedical applications are highlighted.


Asunto(s)
Técnicas Biosensibles , Grafito , Nanoestructuras , Nanotubos de Carbono , Grafito/química , Humanos , Nanoestructuras/química , Nanotubos de Carbono/química
2.
Chem Rec ; 22(7): e202100280, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34921492

RESUMEN

The rapid development of flexible and wearable optoelectronic devices, demanding the superior, reliable, and ultra-long cycling energy storage systems. But poor performances of electrode materials used in energy devices are main obstacles. Recently, single-atom catalysts (SACs) are considered as emerging and potential candidates as electrode materials for battery devices. Herein, we have discussed the recent methods for the fabrication of SACs for rechargeable metal-air batteries, metal-CO2 batteries, metal-sulfur batteries, and other batteries, following the recent advances in assembling and performance of these batteries by using SACs as electrode materials. The role of SACs to solve the bottle-neck problems of these energy storage devices and future perspectives are also discussed.

3.
Gels ; 8(2)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35200464

RESUMEN

The flexible and shockproof rubber-based Al/OD-Gel/Cu electrochemical cell was designed, fabricated, and investigated for the detection of IR and UV irradiations. For this purpose, the transparent gel-orange dye composite was deposited on the porous rubber substrate between aluminum and copper electrodes. It was observed that the gel-orange dye composite was mechanically like a gel: soft and flexible. Electrically, this composite (gel-orange dye) forms a flexible electrolyte. It was found that the impedance of the samples under the effect of infrared irradiation decreased by 2.02 to 2.19 times on changing frequency from 100 Hz to 200 kHz. Accordingly, under the effect of ultraviolet irradiation, the impedance of the samples decreased by 1.23 to 1.45 times on increasing frequency from 100 Hz to 200 kHz. Under the effect of infrared irradiation up to 4000 W/m2, the cell's open-circuit voltage increased by 1.59 times. The cell's open-circuit voltage also increased by 1.06 times under the effect of ultraviolet irradiation up to 200 uW/cm2. The mechanism of the absorption of the infrared and ultraviolet irradiations by the OD-Gel composite has been discussed in detail. The fabricated flexible rubber substrate-based Al/OD-Gel/Cu electrochemical cells can be used as a prototype for the development of gel electronics-based devices.

4.
Materials (Basel) ; 15(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36234087

RESUMEN

Composites such as carbon fiber are used extensively by automotive, aerospace, marine, and energy industries due to their strong mechanical properties. However, there are still many areas it is lacking in testing, especially related to its electrophoretic deposition. In this research work, the tensile strength and Young's modulus of CNT-CF/epoxy composites were measured using the tensile test by varying the electrophoretic deposition (EPD) process parameters. Response surface methodology (RSM) was used to optimize the three main parameters in this EPD process: the volume ratio (water as the basis), deposition voltage, and time to obtain the maximum tensile properties of the composites. There were four volume ratios (0%, 20%, 80% and 100%) used in this design of experiment (DoE) with ratios' pairs of 0%, 100%, and 20%, 80%. For this study, water and methanol were used as the suspension medium. This design's deposition voltage and time were 10 to 20 V and 5 to 15 min. ANOVA further verified the responses' adequacy. The optimum conditions for the first Design of Experiment (DoE) (0% and 100%) were identified as a volume ratio of 99.99% water, deposition voltage of 10 V, and 12.14 min. These conditions provided the maximum strength of these composites with a tensile strength of 7.41 N/mm2 and Young's modulus of 279.9 N/mm2. Subsequently, for the second DoE (20% and 80%), tensile strength of 7.28 N/mm2 and Young's modulus of 274.1 N/mm2 were achieved with the ideal conditions: volume ratio of 44.80% water, deposition voltage of 10.04 V, and time of 6.89 min. It can be concluded that the ideal interaction between these three EPD parameters was necessary to achieve composites with good tensile properties.

5.
Polymers (Basel) ; 13(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34641194

RESUMEN

Herein, a novel copper-doped gadolinium oxide (Cu-doped Gd2O3; CGO) nanofiber was synthesized by a simple solution method in the basic phase and successfully characterized. We have used Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM) and Energy-Dispersive Spectroscopy (EDS) techniques for characterization of the CGO nanofiber. The CGO nanofiber was used later to modify Au-coated µ-Chips with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) polymer mixtures (coating binder) to selectively detect 4-cyanophenol (4-CP) in an aqueous medium. Notable sensing performance was achieved with excellent sensitivity (2.4214 µAµM-1 cm-2), fast response time (~12 s), wide linear dynamic range (LDR = 1.0 nM-1.0 mM: R2 = 0.9992), ultra-low detection limit (LoD; 1.3 ± 0.1 pM at S/N = 3), limit of quantification (LoQ; 4.33 pM), and excellent reproducibility and repeatability for CGO/Au/µ-Chip sensor. This CGO modified Au/µ-chip was further applied with appropriate quantification and determination results in real environmental sample analyses.

6.
Sci Rep ; 10(1): 10428, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32591600

RESUMEN

A glassy carbon electrode (GC) immobilized with chitosan (CHI)@reduced graphene (rGO)-polyaniline (PAni)/ferritin (Frt)/glucose oxidase (GOx) bioelectrode was prepared. The prepared electrode was characterized by using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) techniques. The morphological characterization was made by scanning electron microsopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. This bioelectrode provided a stable current response of 3.5 ± 0.02 mAcm-2 in 20 mM glucose. The coverage of enzyme on 0.07 cm2 area of electrode modified with CHI@rGO-PAni/Frt was calculated to be 3.80 × 10-8 mol cm-2.

7.
Sci Rep ; 9(1): 19234, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31848430

RESUMEN

Development of highly efficient and potential material for toxic p-nitrophenol is an important design for sensitive detection of hazardous species from ecology and environment. Here it is developed, an efficient as well as selective of p-nitrophenol using binary material by electrochemical performances, including good linearity, lower detection limit, good stability, higher reproducibility and extreme sensitivity. The prepared electrode was fabricated by immobilization of SnO2/CdO microcubes (MCs) with conducting coating binders by using well-known glassy carbon electrode (GCE). The proposed MCs with SnO2/CdO were well-functionalized and prepared by facile hydrothermal technique. The general instrumentation namely, FTIR, UV/vis, FESEM, XPS, TEM, EDS, and powder XRD were employed for the morphological evaluation of the prepared doped MCs, structural, optical and elemental analyses. The large dynamic range (LDR) from 1.0 to 0.01 mM with 0.13 pM detection limit (S/N = 3), limit of quantification (LOQ; 0.43 pM), and an excellent sensitivity of 7.12 µAµM-1cm-2 were exhibited by the fabricated binary material based on SnO2/CdO MCs for selective p-nitrophenol capturing. In shortly, the SnO2/CdO MCs can be employed as an efficient electron mediator with binary materials fabricated GCE for capturing the p-nitrophenol at ultra-trace amounts. Then the binary synthesized material of SnO2/CdO MCs is used as potential and sensitive sensor layer by stable electrochemical approach for sensitive capturing of toxic p-nitrophenol from environmental samples.

8.
RSC Adv ; 10(1): 122-132, 2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-35492545

RESUMEN

A highly selective chemisensor for 2-nitrophenol detection was fabricated using ZnO/RuO2 nanoparticles (NPs) synthesized by impregnation method. The as-synthesized NPs were characterized through UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDS), FTIR and X-ray diffraction (XRD). A glassy carbon electrode was modified with as-synthesized ZnO/RuO2 nanoparticles and utilized as a chemical sensor for the detection of 2-nitrophenol. The fabricated sensor exhibited excellent sensitivity (18.20 µA µM-1 cm-2), good reproducibility, short response time (8.0 s.), the lowest detection limit (52.20 ± 2.60 pM) and long-term stability in aqueous phase without interference effects. Finally, the fabricated sensor was validated as a 2-NP probe in various environmental water samples at room conditions.

9.
Chem Commun (Camb) ; (2): 166-8, 2008 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-18092075

RESUMEN

Using ZnO nanonails, a hydrazine electrochemical sensor has been fabricated, for the first time, which showed a high and reproducible sensitivity of 8.56 microA cm(-2) microM(-1) with a response time less than 5 s, a linear range from 0.1 to 1.2 microM and a correlation coefficient of R = 0.999. The limit of detection (LOD), based on the S/N ratio, was estimated to be 0.2 microM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA