Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(5): 1321-1335.e20, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30445039

RESUMEN

Adaptation of liver to the postprandial state requires coordinated regulation of protein synthesis and folding aligned with changes in lipid metabolism. Here we demonstrate that sensory food perception is sufficient to elicit early activation of hepatic mTOR signaling, Xbp1 splicing, increased expression of ER-stress genes, and phosphatidylcholine synthesis, which translate into a rapid morphological ER remodeling. These responses overlap with those activated during refeeding, where they are maintained and constantly increased upon nutrient supply. Sensory food perception activates POMC neurons in the hypothalamus, optogenetic activation of POMC neurons activates hepatic mTOR signaling and Xbp1 splicing, whereas lack of MC4R expression attenuates these responses to sensory food perception. Chemogenetic POMC-neuron activation promotes sympathetic nerve activity (SNA) subserving the liver, and norepinephrine evokes the same responses in hepatocytes in vitro and in liver in vivo as observed upon sensory food perception. Collectively, our experiments unravel that sensory food perception coordinately primes postprandial liver ER adaption through a melanocortin-SNA-mTOR-Xbp1s axis. VIDEO ABSTRACT.


Asunto(s)
Retículo Endoplásmico/metabolismo , Preferencias Alimentarias , Melanocortinas/farmacología , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Animales , Femenino , Regulación de la Expresión Génica , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Norepinefrina/farmacología , Fosfatidilcolinas/análisis , Fosfatidilcolinas/metabolismo , Análisis de Componente Principal , Receptor de Melanocortina Tipo 4/deficiencia , Receptor de Melanocortina Tipo 4/genética , Proteína 1 de Unión a la X-Box/genética
2.
Cell ; 165(1): 125-138, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27015310

RESUMEN

Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Regulación del Apetito , Glucosa/metabolismo , Resistencia a la Insulina , Neuronas/metabolismo , Proteína Relacionada con Agouti/metabolismo , Animales , Conducta Alimentaria , Ratones , Miostatina/genética , Optogenética , Transcriptoma
3.
Cell ; 149(4): 871-85, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22579288

RESUMEN

Thermogenesis in brown adipose tissue (BAT) is fundamental to energy balance and is also relevant for humans. Bone morphogenetic proteins (BMPs) regulate adipogenesis, and, here, we describe a role for BMP8B in the direct regulation of thermogenesis. BMP8B is induced by nutritional and thermogenic factors in mature BAT, increasing the response to noradrenaline through enhanced p38MAPK/CREB signaling and increased lipase activity. Bmp8b(-/-) mice exhibit impaired thermogenesis and reduced metabolic rate, causing weight gain despite hypophagia. BMP8B is also expressed in the hypothalamus, and Bmp8b(-/-) mice display altered neuropeptide levels and reduced phosphorylation of AMP-activated protein kinase (AMPK), indicating an anorexigenic state. Central BMP8B treatment increased sympathetic activation of BAT, dependent on the status of AMPK in key hypothalamic nuclei. Our results indicate that BMP8B is a thermogenic protein that regulates energy balance in partnership with hypothalamic AMPK. BMP8B may offer a mechanism to specifically increase energy dissipation by BAT.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Dieta , Obesidad/metabolismo , Termogénesis , Proteínas Quinasas Activadas por AMP/metabolismo , Adipogénesis , Animales , Proteínas Morfogenéticas Óseas/genética , Metabolismo Energético , Femenino , Hipotálamo/metabolismo , Ratones , Ratones Endogámicos C57BL , Norepinefrina/metabolismo , Ratas , Ratas Sprague-Dawley
4.
Nature ; 583(7818): 839-844, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32699414

RESUMEN

Mutations in the leptin gene (ob) result in a metabolic disorder that includes severe obesity1, and defects in thermogenesis2 and lipolysis3, both of which are adipose tissue functions regulated by the sympathetic nervous system. However, the basis of these sympathetic-associated abnormalities remains unclear. Furthermore, chronic leptin administration reverses these abnormalities in adipose tissue, but the underlying mechanism remains to be discovered. Here we report that ob/ob mice, as well as leptin-resistant diet-induced obese mice, show significant reductions of sympathetic innervation of subcutaneous white and brown adipose tissue. Chronic leptin treatment of ob/ob mice restores adipose tissue sympathetic innervation, which in turn is necessary to correct the associated functional defects. The effects of leptin on innervation are mediated via agouti-related peptide and pro-opiomelanocortin neurons in the hypothalamic arcuate nucleus. Deletion of the gene encoding the leptin receptor in either population leads to reduced innervation in fat. These agouti-related peptide and pro-opiomelanocortin neurons act via brain-derived neurotropic factor-expressing neurons in the paraventricular nucleus of the hypothalamus (BDNFPVH). Deletion of BDNFPVH blunts the effects of leptin on innervation. These data show that leptin signalling regulates the plasticity of sympathetic architecture of adipose tissue via a top-down neural pathway that is crucial for energy homeostasis.


Asunto(s)
Tejido Adiposo/inervación , Tejido Adiposo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Leptina/metabolismo , Sistema Nervioso Simpático/fisiología , Proteína Relacionada con Agouti/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/metabolismo , Leptina/deficiencia , Lipólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Proopiomelanocortina/metabolismo , Transducción de Señal , Grasa Subcutánea/inervación , Grasa Subcutánea/metabolismo , Termogénesis
5.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R54-R65, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38738295

RESUMEN

Obesity is a major public health issue due to its association with type 2 diabetes, hypertension, and other cardiovascular risks. The BBSome, a complex of eight conserved Bardet-Biedl syndrome (BBS) proteins, has emerged as a key regulator of energy and glucose homeostasis as well as cardiovascular function. However, the importance of adipocyte BBSome in controlling these physiological processes is not clear. Here, we show that adipocyte-specific constitutive disruption of the BBSome through selective deletion of the Bbs1 gene adiponectin (AdipoCre/Bbs1fl/fl mice) does not affect body weight under normal chow or high-fat and high-sucrose diet (HFHSD). However, constitutive BBSome deficiency caused impairment in glucose tolerance and insulin sensitivity. Similar phenotypes were observed after inducible adipocyte-specific disruption of the BBSome (AdipoCreERT2/Bbs1fl/fl mice). Interestingly, a significant increase in renal sympathetic nerve activity, measured using multifiber recording in the conscious state, was observed in AdipoCre/Bbs1fl/fl mice on both chow and HFHSD. A significant increase in tail-cuff arterial pressure was also observed in chow-fed AdipoCre/Bbs1fl/fl mice, but this was not reproduced when arterial pressure was measured by radiotelemetry. Moreover, AdipoCre/Bbs1fl/fl mice had no significant alterations in vascular reactivity. On the other hand, AdipoCre/Bbs1fl/fl mice displayed impaired baroreceptor reflex sensitivity when fed HFHSD, but not on normal chow. Taken together, these data highlight the relevance of the adipocyte BBSome for the regulation of glucose homeostasis and sympathetic traffic. The BBSome also contributes to baroreflex sensitivity under HFHSD, but not normal chow.NEW & NOTEWORTHY The current study show how genetic manipulation of fat cells impacts various functions of the body including sensitivity to the hormone insulin.


Asunto(s)
Adipocitos , Adiponectina , Animales , Adipocitos/metabolismo , Adiponectina/metabolismo , Adiponectina/genética , Ratones , Resistencia a la Insulina , Masculino , Obesidad/fisiopatología , Obesidad/metabolismo , Obesidad/genética , Ratones Noqueados , Sistema Nervioso Simpático/fisiopatología , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Enfermedades del Sistema Nervioso Autónomo/fisiopatología , Enfermedades del Sistema Nervioso Autónomo/genética , Enfermedades del Sistema Nervioso Autónomo/metabolismo , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/fisiopatología , Síndrome de Bardet-Biedl/metabolismo , Proteínas Asociadas a Microtúbulos
6.
Am J Physiol Endocrinol Metab ; 325(6): E711-E722, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37909854

RESUMEN

The BBSome is a protein complex composed of eight Bardet-Biedl syndrome (BBS) proteins including BBS1. Humans and mice lacking a functional BBSome display obesity and type 2 diabetes, highlighting the importance of this protein complex for metabolic regulation. However, the contribution of the BBSome in insulin-sensitive tissues such as skeletal muscle and liver to metabolic regulation is ill-defined. Here, we show that disruption of the BBSome through Bbs1 gene deletion in the skeletal muscle had no effect on body weight or glucose handling, but improved insulin sensitivity of female mice without changing insulin receptor signaling. Interestingly, when fed an obesogenic diet, male mice lacking the Bbs1 gene in skeletal muscle exhibited heightened insulin sensitivity despite the comparable weight gain and glucose tolerance relative to controls. On the other hand, normal chow-fed mice missing the Bbs1 gene in hepatocytes displayed increased body weight, as well as impaired glucose handling and insulin sensitivity. This was associated with attenuated insulin signaling in liver and hepatocytes, but not skeletal muscle and white adipose tissue. Moreover, hepatocytes lacking the Bbs1 gene displayed significant reduction in plasma membrane insulin receptor levels due to the mitochondrial dysfunction evoked by loss of the BBSome. Together, these findings demonstrate that myocyte BBSome is minimally involved in metabolic regulation, whereas the hepatic BBSome plays a critical role in the control of energy homeostasis and insulin sensitivity through its requirement for insulin receptor trafficking.NEW & NOTEWORTHY The ongoing epidemic of obesity and associated illnesses highlights the need to understand the biological processes that regulate energy balance. Here, we identified an important role for a protein complex called BBSome in the control of hepatic function. We show that the liver BBSome is necessary to maintain body weight and blood glucose levels due to its requirements to generate energy and detect insulin, a hormone that is essential for metabolic regulation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Insulinas , Humanos , Ratones , Masculino , Femenino , Animales , Proteínas Asociadas a Microtúbulos/metabolismo , Receptor de Insulina , Resistencia a la Insulina/genética , Diabetes Mellitus Tipo 2/genética , Obesidad/genética , Obesidad/metabolismo , Peso Corporal/genética , Hígado/metabolismo , Glucosa , Músculo Esquelético/metabolismo
7.
Am J Physiol Regul Integr Comp Physiol ; 324(2): R161-R170, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36534590

RESUMEN

Bsardet Biedl syndrome (BBS) is a genetic condition associated with various clinical features including cutaneous disorders and certain autoimmune and inflammatory diseases pointing to a potential role of BBS proteins in the regulation of immune function. BBS1 protein, which is a key component of the BBSome, a protein complex involved in the regulation of cilia function and other cellular processes, has been implicated in the immune synapse assembly by promoting the centrosome polarization to the antigen-presenting cells. Here, we assessed the effect of disrupting the BBSome, through Bbs1 gene deletion, in T cells. Interestingly, mice lacking the Bbs1 gene specifically in T cells (T-BBS1-/-) displayed normal body weight, adiposity, and glucose handling, but have smaller spleens. However, T-BBS1-/- mice had no change in the proportion and absolute number of B cells and T cells in the spleen and lymph nodes. There was also no alteration in the CD4/CD8 lineage commitment or survival in the thymus of T-BBS1-/- mice. On the other hand, T-BBS1-/- mice treated with Imiquimod dermally exhibited a significantly higher percentage of CD3-positive splenocytes that was due to CD4 but not CD8 T cell predominance. Notably, we found that T-BBS1-/- mice had significantly decreased wound closure, an effect that was more pronounced in males indicating that the BBSome plays an important role in T cell-mediated skin repair. Together, these findings implicate the BBSome in the regulation of selective functions of T cells.


Asunto(s)
Cilios , Proteínas Asociadas a Microtúbulos , Animales , Masculino , Ratones , Adiposidad , Cilios/metabolismo , Cilios/patología , Inmunidad/genética , Proteínas Asociadas a Microtúbulos/genética , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo
8.
Physiol Genomics ; 54(6): 196-205, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35476598

RESUMEN

The brain renin-angiotensin system (RAS) is implicated in control of blood pressure (BP), fluid intake, and energy expenditure (EE). Angiotensin II (ANG II) within the arcuate nucleus of the hypothalamus contributes to control of resting metabolic rate (RMR) and thereby EE through its actions on Agouti-related peptide (AgRP) neurons, which also contribute to EE control by leptin. First, we determined that although leptin stimulates EE in control littermates, mice with transgenic activation of the brain RAS (sRA) exhibit increased EE and leptin has no additive effect to exaggerate EE in these mice. These findings led us to hypothesize that leptin and ANG II in the brain stimulate EE through a shared mechanism. Because AgRP signaling to the melanocortin MC4R receptor contributes to the metabolic effects of leptin, we performed a series of studies examining RMR, fluid intake, and BP responses to ANG II in mice rendered deficient for expression of MC4R via a transcriptional block (Mc4r-TB). These mice were resistant to stimulation of RMR in response to activation of the endogenous brain RAS via chronic deoxycorticosterone acetate (DOCA)-salt treatment, whereas fluid and electrolyte effects remained intact. These mice were also resistant to stimulation of RMR via acute intracerebroventricular (ICV) injection of ANG II, whereas BP responses to ICV ANG II remained intact. Collectively, these data demonstrate that the effects of ANG II within the brain to control RMR and EE are dependent on MC4R signaling, whereas fluid homeostasis and BP responses are independent of MC4R signaling.


Asunto(s)
Angiotensina II , Metabolismo Energético , Leptina , Receptor de Melanocortina Tipo 4 , Proteína Relacionada con Agouti/metabolismo , Angiotensina II/farmacología , Animales , Presión Sanguínea/fisiología , Encéfalo/metabolismo , Metabolismo Energético/fisiología , Leptina/metabolismo , Leptina/farmacología , Melanocortinas/metabolismo , Melanocortinas/farmacología , Ratones , Receptor de Melanocortina Tipo 4/metabolismo
9.
Diabetologia ; 64(1): 181-194, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33052459

RESUMEN

AIMS/HYPOTHESIS: Melanocortin 4 receptor (MC4R) mutation is the most common cause of known monogenic obesity in humans. Unexpectedly, humans and rodents with MC4R deficiency do not develop hyperglycaemia despite chronic obesity and insulin resistance. To explain the underlying mechanisms for this phenotype, we determined the role of MC4R in glucose homeostasis in the presence and absence of obesity in mice. METHODS: We used global and hypothalamus-specific MC4R-deficient mice to investigate the brain regions that contribute to glucose homeostasis via MC4R. We performed oral, intraperitoneal and intravenous glucose tolerance tests in MC4R-deficient mice that were either obese or weight-matched to their littermate controls to define the role of MC4R in glucose regulation independently of changes in body weight. To identify the integrative pathways through which MC4R regulates glucose homeostasis, we measured renal and adrenal sympathetic nerve activity. We also evaluated glucose homeostasis in adrenaline (epinephrine)-deficient mice to investigate the role of adrenaline in mediating the effects of MC4R in glucose homeostasis. We employed a graded [13C6]glucose infusion procedure to quantify renal glucose reabsorption in MC4R-deficient mice. Finally, we measured the levels of renal glucose transporters in hypothalamus-specific MC4R-deficient mice and adrenaline-deficient mice using western blotting to ascertain the molecular mechanisms underlying MC4R control of glucose homeostasis. RESULTS: We found that obese and weight-matched MC4R-deficient mice exhibited improved glucose tolerance due to elevated glucosuria, not enhanced beta cell function. Moreover, MC4R deficiency selectively in the paraventricular nucleus of the hypothalamus (PVH) is responsible for reducing the renal threshold for glucose as measured by graded [13C6]glucose infusion technique. The MC4R deficiency suppressed renal sympathetic nerve activity by 50% in addition to decreasing circulating adrenaline and renal GLUT2 levels in mice, which contributed to the elevated glucosuria. We further report that adrenaline-deficient mice recapitulated the increased excretion of glucose in urine observed in the MC4R-deficient mice. Restoration of circulating adrenaline in both the MC4R- and adrenaline-deficient mice reversed their phenotype of improved glucose tolerance and elevated glucosuria, demonstrating the role of adrenaline in mediating the effects of MC4R on glucose reabsorption. CONCLUSIONS/INTERPRETATION: These findings define a previously unrecognised function of hypothalamic MC4R in glucose reabsorption mediated by adrenaline and renal GLUT2. Taken together, our findings indicate that elevated glucosuria due to low sympathetic tone explains why MC4R deficiency does not cause hyperglycaemia despite inducing obesity and insulin resistance. Graphical abstract.


Asunto(s)
Hexosas/metabolismo , Homeostasis/fisiología , Receptor de Melanocortina Tipo 4/fisiología , Bases de Schiff/metabolismo , Animales , Glucemia/metabolismo , Cruzamientos Genéticos , Epinefrina/deficiencia , Epinefrina/fisiología , Prueba de Tolerancia a la Glucosa , Transportador de Glucosa de Tipo 2/fisiología , Glucosuria/fisiopatología , Hipotálamo/química , Insulina/sangre , Resistencia a la Insulina/fisiología , Riñón/inervación , Riñón/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/fisiopatología , Receptor de Melanocortina Tipo 4/deficiencia , Sistema Nervioso Simpático/fisiopatología
10.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R228-R237, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34189960

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) signaling complex is emerging as a critical regulator of cardiovascular function with alterations in this pathway implicated in cardiovascular diseases. In this study, we used animal models and human tissues to examine the role of vascular mTORC1 signaling in the endothelial dysfunction associated with obesity. In mice, obesity induced by high-fat/high-sucrose diet feeding for ∼2 mo resulted in aortic endothelial dysfunction without appreciable changes in vascular mTORC1 signaling. On the other hand, chronic high-fat diet feeding (45% or 60% kcal: ∼9 mo) in mice resulted in endothelial dysfunction associated with elevated vascular mTORC1 signaling. Endothelial cells and visceral adipose vessels isolated from obese humans display a trend toward elevated mTORC1 signaling. Surprisingly, genetic disruption of endothelial mTORC1 signaling through constitutive or tamoxifen inducible deletion of endothelial Raptor (critical subunit of mTORC1) did not prevent or rescue the endothelial dysfunction associated with high-fat diet feeding in mice. Endothelial mTORC1 deficiency also failed to reverse the endothelial dysfunction evoked by a high-fat/high-sucrose diet in mice. Taken together, these data show increased vascular mTORC1 signaling in obesity, but this vascular mTORC1 activation appears not to be required for the development of endothelial impairment in obesity.


Asunto(s)
Endotelio Vascular/enzimología , Diana Mecanicista del Complejo 1 de la Rapamicina/deficiencia , Obesidad/prevención & control , Grasa Subcutánea/irrigación sanguínea , Vasodilatación , Animales , Aorta Torácica/enzimología , Aorta Torácica/fisiopatología , Estudios de Casos y Controles , Dieta Alta en Grasa , Sacarosa en la Dieta , Modelos Animales de Enfermedad , Endotelio Vascular/fisiopatología , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Arterias Mesentéricas/enzimología , Arterias Mesentéricas/fisiopatología , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/enzimología , Obesidad/genética , Obesidad/fisiopatología , Proteína Reguladora Asociada a mTOR/deficiencia , Proteína Reguladora Asociada a mTOR/genética , Transducción de Señal
11.
Proc Natl Acad Sci U S A ; 115(23): E5289-E5297, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29784793

RESUMEN

In response to cold exposure, placental mammals maintain body temperature by increasing sympathetic nerve activity in brown adipose tissue (BAT). Triggering of ß-adrenergic receptors on brown adipocytes stimulates thermogenesis via induction of the cAMP/PKA pathway. Although cAMP response element-binding protein (CREB) and its coactivators-the cAMP-regulated transcriptional coactivators (CRTCs)-mediate transcriptional effects of cAMP in most tissues, other transcription factors such as ATF2 appear critical for induction of thermogenic genes by cAMP in BAT. Brown adipocytes arise from Myf5-positive mesenchymal cells under the control of PRDM16, a coactivator that concurrently represses differentiation along the skeletal muscle lineage. Here, we show that the CREB coactivator CRTC3 is part of an inhibitory feedback pathway that antagonizes PRDM16-dependent differentiation. Mice with a knockout of CRTC3 in BAT (BKO) have increased cold tolerance and reduced adiposity, whereas mice overexpressing constitutively active CRTC3 in adipose tissue are more cold sensitive and have greater fat mass. CRTC3 reduced sympathetic nerve activity in BAT by up-regulating the expression of miR-206, a microRNA that promotes differentiation along the myogenic lineage and that we show here decreases the expression of VEGFA and neurotrophins critical for BAT innervation and vascularization. Sympathetic nerve activity to BAT was enhanced in BKO mice, leading to increases in catecholamine signaling that stimulated energy expenditure. As reexpression of miR-206 in BAT from BKO mice reversed the salutary effects of CRTC3 depletion on cold tolerance, our studies suggest that small-molecule inhibitors against this coactivator may provide therapeutic benefit to overweight individuals.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Termogénesis/fisiología , Factores de Transcripción/metabolismo , Adipocitos Marrones/metabolismo , Adiposidad/genética , Adiposidad/fisiología , Animales , Diferenciación Celular/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Metabolismo Energético , Ratones , Ratones Noqueados , MicroARNs/genética , Transducción de Señal , Sistema Nervioso Simpático/metabolismo , Factores de Transcripción/genética
12.
Am J Physiol Heart Circ Physiol ; 319(5): H1069-H1077, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32946297

RESUMEN

The arcuate nucleus of the hypothalamus (ARC) plays a key role in linking peripheral metabolic status to the brain melanocortin system, which influences a wide range of physiological processes including the sympathetic nervous system and blood pressure. The importance of the activity of agouti-related peptide (AgRP)- and proopiomelanocortin (POMC)-expressing neurons, two molecularly distinct populations of ARC neurons, for metabolic regulation is well established, but their relevance for sympathetic and cardiovascular control remains unclear. We used designer receptors exclusively activated by designer drug (DREADD) technology to study how activation of AgRP and POMC neurons affect renal sympathetic nerve traffic and blood pressure. In addition to the drastic feeding-stimulatory effect, DREADD-mediated activation of AgRP, but not POMC neurons, induced an acute reduction in renal sympathetic nerve activity in conscious mice. Paradoxically, however, DREADD-mediated chronic activation of AgRP neurons caused a significant increase in blood pressure specifically in the inactive light phase. On the other hand, chronic activation of POMC neurons led to a significant reduction in blood pressure. These results bring new insights to a previously unappreciated role of ARC AgRP and POMC neuronal activity in autonomic and cardiovascular regulation.NEW & NOTEWORTHY Agouti-related peptide (AgRP)- and proopiomelanocortin (POMC)-expressing neurons of the arcuate nucleus are essential components of the brain melanocortin system that controls various physiological processes. Here, we tested the metabolic and cardiovascular effects of direct activation of these two populations of neurons. Our findings show that, in addition to stimulation of food intake, chemogenetic mediated activation of hypothalamic arcuate nucleus AgRP, but not POMC, neurons reduce renal sympathetic traffic. Despite this, chronic activation of AgRP neurons increased blood pressure. However, chronic activation of POMC neurons led to a significant reduction in blood pressure. Our findings highlight the importance of arcuate nucleus AgRP and POMC neuronal activity in autonomic and cardiovascular regulation.


Asunto(s)
Corazón/fisiología , Hipotálamo/fisiología , Neuronas/fisiología , Sistema Nervioso Simpático/fisiología , Potenciales de Acción , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Animales , Presión Sanguínea , Hipotálamo/citología , Ratones , Neuronas/metabolismo , Proopiomelanocortina/genética , Proopiomelanocortina/metabolismo
13.
Am J Physiol Cell Physiol ; 317(3): C457-C465, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31216194

RESUMEN

Cell motility and migration play critical roles in various physiological processes and disease states. Here, we show that the BBBsome, a macromolecule composed of eight Bardet-Biedl syndrome (BBS) proteins including BBS1, is a critical determinant of cell migration and wound healing. Fibroblast cells derived from mice or humans harboring a homozygous missense mutation (BBS1M390R/M390R) that disrupt the BBSome exhibit defects in migration and wound healing. Furthermore, we demonstrate that BBS1M390R/M390R mice have significantly delayed wound closure. In line with this, we provide data suggesting that BBS1M390R/M390R fibroblasts have impaired platelet-derived growth factor-AA (PDGF) receptor-α signaling, a key regulator of directional cell migration acting as a chemoattractant during postnatal migration responses such as wound healing. In addition, we show that BBS1M390R/M390R fibroblasts have upregulated RhoA expression and activity. The relevance of RhoA upregulation is demonstrated by the ability of RhoA-kinase inhibitor Y27632 to partially rescue the migration defect of BBS1M390R/M390R fibroblasts cells. We also show that accumulation of RhoA protein in BBS1M390R/M390R fibroblasts cells is associated with reduction and inactivation of the ubiquitin ligase Cullin-3. Consistent with this, Cullin-3 inhibition with MLN4924 is sufficient to reduce migration of normal fibroblasts. These data implicate the BBSome in cell motility and tissue repair through a mechanism that involves PDGF receptor signaling and Cullin-3-mediated control of RhoA.


Asunto(s)
Síndrome de Bardet-Biedl , Movimiento Celular/fisiología , Proteínas Cullin/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Transducción de Señal/fisiología , Proteína de Unión al GTP rhoA/fisiología , Animales , Síndrome de Bardet-Biedl/genética , Movimiento Celular/efectos de los fármacos , Células Cultivadas , Proteínas Cullin/antagonistas & inhibidores , Ciclopentanos/farmacología , Inhibidores Enzimáticos/farmacología , Femenino , Técnicas de Sustitución del Gen/métodos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Pirimidinas/farmacología , Proteína de Unión al GTP rhoA/antagonistas & inhibidores
14.
J Physiol ; 597(17): 4565-4580, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31278754

RESUMEN

KEY POINTS: Non-alcoholic fatty liver disease, characterized in part by elevated liver triglycerides (i.e. hepatic steatosis), is a growing health problem. In this study, we found that hepatic steatosis is associated with robust hepatic sympathetic overactivity. Removal of hepatic sympathetic nerves reduced obesity-induced hepatic steatosis. Liver sympathetic innervation modulated hepatic lipid acquisition pathways during obesity. ABSTRACT: Non-alcoholic fatty liver disease (NAFLD) affects 1 in 3 Americans and is a significant risk factor for type II diabetes mellitus, insulin resistance and hepatic carcinoma. Characterized in part by excessive hepatic triglyceride accumulation (i.e. hepatic steatosis), the incidence of NAFLD is increasing - in line with the growing obesity epidemic. The role of the autonomic nervous system in NAFLD remains unclear. Here, we show that chronic hepatic sympathetic overactivity mediates hepatic steatosis. Direct multiunit recordings of hepatic sympathetic nerve activity were obtained in high fat diet and normal chow fed male C57BL/6J mice. To reduce hepatic sympathetic nerve activity we utilized two approaches including pharmacological ablation of the sympathetic nerves and phenol-based hepatic sympathetic nerve denervation. Diet-induced NAFLD was associated with a nearly doubled firing rate of the hepatic sympathetic nerves, which was largely due to an increase in efferent nerve traffic. Furthermore, established high fat diet-induced hepatic steatosis was effectively reduced with pharmacological or phenol-based removal of the hepatic sympathetic nerves, independent of changes in body weight, caloric intake or adiposity. Ablation of liver sympathetic nerves was also associated with improvements in liver triglyceride accumulation pathways including free fatty acid uptake and de novo lipogenesis. These findings highlight an unrecognized pathogenic link between liver sympathetic outflow and hepatic steatosis and suggest that manipulation of the liver sympathetic nerves may represent a novel therapeutic strategy for NAFLD.


Asunto(s)
Hígado Graso/cirugía , Hígado/cirugía , Obesidad/terapia , Adiposidad/fisiología , Animales , Peso Corporal/fisiología , Dieta Alta en Grasa/efectos adversos , Ingestión de Energía/fisiología , Ácidos Grasos no Esterificados/metabolismo , Hígado Graso/metabolismo , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos/fisiología , Lipogénesis/fisiología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/cirugía , Obesidad/metabolismo , Simpatectomía/métodos , Triglicéridos/metabolismo
15.
PLoS Genet ; 12(2): e1005890, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26926121

RESUMEN

Bardet-Biedl syndrome (BBS) is a highly pleiotropic autosomal recessive disorder associated with a wide range of phenotypes including obesity. However, the underlying mechanism remains unclear. Here, we show that neuronal BBSome is a critical determinant of energy balance through its role in the regulation of the trafficking of the long signaling form of the leptin receptor (LRb). Targeted disruption of the BBSome by deleting the Bbs1 gene from the nervous system causes obesity in mice, and this phenotype is reproduced by ablation of the Bbs1 gene selectively in the LRb-expressing cells, but not from adipocytes. Obesity developed as a consequence of both increased food intake and decreased energy expenditure in mice lacking the Bbs1 gene in LRb-expressing cells. Strikingly, the well-known role of BBS proteins in the regulation of ciliary formation and function is unlikely to account for the obesogenic effect of BBS1 loss as disruption of the intraflagellar transport (IFT) machinery required for ciliogenesis by deleting the Ift88 gene in LRb-expressing cells caused a marginal increase in body weight and adiposity. Instead, we demonstrate that silencing BBS proteins, but not IFT88, impair the trafficking of the LRb to the plasma membrane leading to central leptin resistance in a manner independent of obesity. Our data also demonstrate that postnatal deletion of the Bbs1 gene in the mediobasal hypothalamus can cause obesity in mice, arguing against an early neurodevelopmental origin of obesity in BBS. Our results depict a novel mechanism underlying energy imbalance and obesity in BBS with potential implications in common forms of human obesity.


Asunto(s)
Síndrome de Bardet-Biedl/metabolismo , Membrana Celular/metabolismo , Receptores de Leptina/metabolismo , Animales , Síndrome de Bardet-Biedl/genética , Membrana Celular/genética , Metabolismo Energético/fisiología , Femenino , Hipotálamo/fisiología , Ratones Mutantes , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Obesidad/genética , Obesidad/metabolismo , Transporte de Proteínas , Receptores de Leptina/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
16.
PLoS Genet ; 11(6): e1005311, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26103456

RESUMEN

Insulin and its receptor are critical for the regulation of metabolic functions, but the mechanisms underlying insulin receptor (IR) trafficking to the plasma membrane are not well understood. Here, we show that Bardet Biedl Syndrome (BBS) proteins are necessary for IR localization to the cell surface. We demonstrate that the IR interacts physically with BBS proteins, and reducing the expression of BBS proteins perturbs IR expression in the cell surface. We show the consequence of disrupting BBS proteins for whole body insulin action and glucose metabolism using mice lacking different BBS genes. These findings demonstrate the importance of BBS proteins in underlying IR cell surface expression. Our data identify defects in trafficking and localization of the IR as a novel mechanism accounting for the insulin resistance commonly associated with human BBS. This is supported by the reduced surface expression of the IR in fibroblasts derived from patients bearing the M390R mutation in the BBS1 gene.


Asunto(s)
Síndrome de Bardet-Biedl/genética , Proteínas Asociadas a Microtúbulos/genética , Receptor de Insulina/metabolismo , Animales , Síndrome de Bardet-Biedl/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Células HEK293 , Humanos , Insulina/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Unión Proteica , Transporte de Proteínas
17.
Am J Physiol Regul Integr Comp Physiol ; 313(6): R633-R645, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-28794102

RESUMEN

Remote and selective spatiotemporal control of the activity of neurons to regulate behavior and physiological functions has been a long-sought goal in system neuroscience. Identification and subsequent bioengineering of light-sensitive ion channels (e.g., channelrhodopsins, halorhodopsin, and archaerhodopsins) from the bacteria have made it possible to use light to artificially modulate neuronal activity, namely optogenetics. Recent advance in genetics has also allowed development of novel pharmacological tools to selectively and remotely control neuronal activity using engineered G protein-coupled receptors, which can be activated by otherwise inert drug-like small molecules such as the designer receptors exclusively activated by designer drug, a form of chemogenetics. The cutting-edge optogenetics and pharmacogenetics are powerful tools in neuroscience that allow selective and bidirectional modulation of the activity of defined populations of neurons with unprecedented specificity. These novel toolboxes are enabling significant advances in deciphering how the nervous system works and its influence on various physiological processes in health and disease. Here, we discuss the fundamental elements of optogenetics and chemogenetics approaches and some of the applications that yielded significant advances in various areas of neuroscience and beyond.


Asunto(s)
Canales Iónicos , Neuronas , Neurociencias/métodos , Optogenética/métodos , Farmacogenética/métodos , Receptores Acoplados a Proteínas G , Transducción de Señal , Animales , Humanos , Canales Iónicos/efectos de los fármacos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Canales Iónicos/efectos de la radiación , Luz , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de la radiación , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación
18.
Clin Sci (Lond) ; 131(14): 1689-1700, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28667067

RESUMEN

Obesity is associated with increased cardiovascular morbidity and mortality in part due to vascular abnormalities such as endothelial dysfunction and arterial stiffening. The hypertension and other health complications that arise from these vascular defects increase the risk of heart diseases and stroke. Prooxidant and proinflammatory signaling pathways as well as adipocyte-derived factors have emerged as critical mediators of obesity-associated vascular abnormalities. Designing treatments aimed specifically at improving the vascular dysfunction caused by obesity may provide an effective therapeutic approach to prevent the cardiovascular sequelae associated with excessive adiposity. In this review, we discuss the recent evidence supporting the role of oxidative stress and cytokines and inflammatory signals within the vasculature as well as the impact of the surrounding perivascular adipose tissue (PVAT) on the regulation of vascular function and arterial stiffening in obesity. In particular, we focus on the highly plastic nature of the vasculature in response to altered oxidant and inflammatory signaling and highlight how weight management can be an effective therapeutic approach to reduce the oxidative stress and inflammatory signaling and improve vascular function.


Asunto(s)
Enfermedades Cardiovasculares/etiología , Mediadores de Inflamación/metabolismo , Obesidad/complicaciones , Estrés Oxidativo/fisiología , Animales , Enfermedades Cardiovasculares/fisiopatología , Citocinas/metabolismo , Endotelio Vascular/fisiopatología , Humanos , Inflamación/etiología , Resistencia a la Insulina/fisiología , Obesidad/dietoterapia , Obesidad/fisiopatología , Transducción de Señal/fisiología , Pérdida de Peso/fisiología
19.
Clin Auton Res ; 32(6): 391-393, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36326945
20.
J Neurosci ; 35(2): 474-84, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25589743

RESUMEN

Leptin action in the brain has emerged as an important regulator of liver function independently from its effects on food intake and body weight. The autonomic nervous system plays a key role in the regulation of physiological processes by leptin. Here, we used direct recording of nerve activity from sympathetic or vagal nerves subserving the liver to investigate how brain action of leptin controls hepatic autonomic nerve activity. Intracerebroventricular (ICV) administration of leptin activated hepatic sympathetic traffic in rats and mice in dose- and receptor-dependent manners. The hepatic sympatho-excitatory effects of leptin were also observed when leptin was microinjected directly into the arcuate nucleus (ARC), but not into the ventromedial hypothalamus (VMH). Moreover, using pharmacological and genetic approaches, we show that leptin-induced increase in hepatic sympathetic outflow depends on PI3K but not AMP-activated protein kinase (AMPK), STAT3, or ERK1/2. Interestingly, ICV leptin also increased hepatic vagal nerve activity in rats. We show that this response is reproduced by intra-ARC, but not intra-VMH, leptin administration and requires PI3K and AMPK. We conclude that central leptin signaling conveys the information to the liver through the sympathetic and parasympathetic branches of the autonomic nervous system. Our data also provide important insight into the molecular events underlying leptin's control of hepatic autonomic nerve activity by implicating PI3K and AMPK pathways.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Hipotálamo/metabolismo , Hígado/inervación , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Leptina/metabolismo , Nervio Vago/fisiología , Animales , Hipotálamo/efectos de los fármacos , Hipotálamo/fisiología , Leptina/farmacología , Sistema de Señalización de MAP Quinasas , Masculino , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Ratas , Ratas Wistar , Factor de Transcripción STAT3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA