Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Pharmacol Res ; 162: 105245, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33069756

RESUMEN

p73, along with p53 and p63, belongs to the p53 family of transcription factors. Besides the p53-like tumor suppressive activities, p73 has unique roles, namely in neuronal development and differentiation. In addition, the TP73 gene is rarely mutated in tumors. This makes p73 a highly appealing therapeutic target, particularly towards cancers with a null or disrupted p53 pathway. Distinct isoforms are transcribed from the TP73 locus either with (TAp73) and without (ΔNp73) the N-terminal transactivation domain. Conversely to TA tumor suppressors, ΔN proteins exhibit oncogenic properties by inhibiting p53 and TA protein functions. As such, p73 isoforms compose a puzzled and challenging regulatory pathway. This state-of-the-art review affords an update overview on p73 structure, biological functions and pharmacological regulation. Importantly, it addresses the relevance of p73 isoforms in carcinogenesis, highlighting their potential as drug targets in anticancer therapy. A critical discussion of major pharmacological approaches to promote p73 tumor suppressive activities, with relevant survival outcomes for cancer patients, is also provided.


Asunto(s)
Neoplasias/metabolismo , Proteína Tumoral p73/metabolismo , Animales , Humanos , Neoplasias/tratamiento farmacológico , Transducción de Señal , Proteína Tumoral p73/química , Proteína p53 Supresora de Tumor/metabolismo
2.
Exp Cell Res ; 330(1): 164-77, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25265062

RESUMEN

In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73 induced growth inhibition associated with S-phase cell cycle arrest. This growth inhibition was accompanied by reactive oxygen species production and autophagic cell death. Furthermore, they stimulated rapamycin-induced autophagy. On the contrary, none of the tested p53 family members induced apoptosis either per se or after apoptotic stimuli. As previously reported for p53, also TAp63, ΔNp63 and TAp73 increased actin expression levels and its depolarization, suggesting that ACT1 is also a p63 and p73 putative yeast target gene. Additionally, MDM2 and MDMX inhibited the activity of all tested p53 family members in yeast, although the effect was weaker on TAp63. Moreover, Nutlin-3a and SJ-172550 were identified as potential inhibitors of the p73 interaction with MDM2 and MDMX, respectively. Altogether, the yeast-based assays herein developed can be envisaged as a simplified cell system to study the involvement of p53 family members in autophagy, the modulation of their activities by specific interactors (MDM2 and MDMX), and the potential of new small molecules to modulate these interactions.


Asunto(s)
Autofagia , Saccharomyces cerevisiae/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Acetatos/farmacología , Actinas/genética , Actinas/metabolismo , Proteínas de Ciclo Celular , Proliferación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Imidazoles/farmacología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Piperazinas/farmacología , Unión Proteica , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Pirazoles/farmacología , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína Tumoral p73 , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
3.
Pharmacol Res ; 95-96: 42-52, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25814188

RESUMEN

Inactivation of the p53 tumor suppressor protein by interaction with murine double minute (MDM) proteins, MDM2 and MDMX, is a common event in human tumors expressing wild-type p53. In these tumors, the simultaneous inhibition of these interactions with MDMs, for a full p53 reactivation, represents a promising anticancer strategy. Herein, we report the identification of a dual inhibitor of the p53 interaction with MDM2 and MDMX, the (S)-tryptophanol derivative OXAZ-1, from the screening of a small library of enantiopure tryptophanol-derived oxazolopiperidone lactams, using a yeast-based assay. With human colon adenocarcinoma HCT116 cell lines expressing wild-type p53 (HCT116 p53(+/+)) and its p53-null isogenic derivative (HCT116 p53(-/-)), it was shown that OXAZ-1 induced a p53-dependent tumor growth-inhibitory effect. In fact, OXAZ-1 induced p53 stabilization, up-regulated p53 transcription targets, such as MDM2, MDMX, p21, Puma and Bax, and led to PARP cleavage, in p53(+/+), but not in p53(-/-), HCT116 cells. In addition, similar tumor cytotoxic effects were observed for OXAZ-1 against MDMX-overexpressing breast adenocarcinoma MCF-7 tumor cells, commonly described as highly resistant to MDM2-only inhibitors. In HCT116 p53(+/+) cells, the disruption of the p53 interaction with MDMs by OXAZ-1 was further confirmed by co-immunoprecipitation. It was also shown that OXAZ-1 potently triggered a p53-dependent mitochondria-mediated apoptosis, characterized by reactive oxygen species generation, mitochondrial membrane potential dissipation, Bax translocation to mitochondria, and cytochrome c release, and exhibited a p53-dependent synergistic effect with conventional chemotherapeutic drugs. Collectively, in this work, a novel selective activator of the p53 pathway is reported with promising antitumor properties to be explored either alone or combined with conventional chemotherapeutic drugs. Moreover, OXAZ-1 may represent a promising starting scaffold to search for new dual inhibitors of the p53-MDMs interaction.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Nucleares/metabolismo , Oxazoles/farmacología , Piperidonas/farmacología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Triptófano/análogos & derivados , Proteína p53 Supresora de Tumor/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Células HCT116 , Humanos , Células MCF-7 , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estructura Molecular , Proteínas Nucleares/genética , Oxazoles/síntesis química , Oxazoles/química , Piperidonas/síntesis química , Piperidonas/química , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Especies Reactivas de Oxígeno/metabolismo , Saccharomyces cerevisiae/genética , Triptófano/química , Proteína p53 Supresora de Tumor/genética
4.
Cancers (Basel) ; 15(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38136266

RESUMEN

Dysregulation of the DNA damage response may contribute to the sensitization of cancer cells to DNA-targeting agents by impelling cell death. In fact, the inhibition of the DNA repair pathway is considered a promising anticancer therapeutic strategy, particularly in combination with standard-of-care agents. The xanthonoside XGAc was previously described as a potent inhibitor of cancer cell growth. Herein, we explored its antitumor activity against triple-negative breast cancer (TNBC), ovarian cancer and pancreatic ductal adenocarcinoma (PDAC) cells as a single agent and in combination with the poly(ADP-ribose) polymerase inhibitor (PARPi) olaparib. We demonstrated that XGAc inhibited the growth of TNBC, ovarian and PDAC cells by inducing cell cycle arrest and apoptosis. XGAc also induced genotoxicity, inhibiting the expression of DNA repair proteins particularly involved in homologous recombination, including BRCA1, BRCA2 and RAD51. Moreover, it displayed potent synergistic effects with olaparib in TNBC, ovarian cancer and PDAC cells. Importantly, this growth inhibitory activity of XGAc was further reinforced in a TNBC spheroid model and in patient-derived ovarian cancer cells. Also, drug-resistant cancer cells showed no cross-resistance to XGAc. Additionally, the ability of XGAc to prevent cancer cell migration was evidenced in TNBC, ovarian cancer and PDAC cells. Altogether, these results highlight the great potential of acetylated xanthonosides such as XGAc as promising anticancer agents against hard-to-treat cancers.

5.
Cancers (Basel) ; 13(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34298653

RESUMEN

Precision medicine aims to identify specific molecular alterations, such as driver mutations, allowing tailored and effective anticancer therapies. Poly(ADP)-ribose polymerase inhibitors (PARPi) are the prototypical example of targeted therapy, exploiting the inability of cancer cells to repair DNA damage. Following the concept of synthetic lethality, PARPi have gained great relevance, particularly in BRCA1 dysfunctional cancer cells. In fact, BRCA1 mutations culminate in DNA repair defects that can render cancer cells more vulnerable to therapy. However, the efficacy of these drugs has been greatly affected by the occurrence of resistance due to multi-connected DNA repair pathways that may compensate for each other. Hence, the search for additional effective agents targeting DNA damage repair (DDR) is of crucial importance. In this context, BRCA1 has assumed a central role in developing drugs aimed at inhibiting DNA repair activity. Collectively, this review provides an in-depth understanding of the biology and regulatory mechanisms of DDR pathways, highlighting the potential of DDR-associated molecules, particularly BRCA1 and its interconnected partners, in precision cancer medicine. It also affords an overview about what we have achieved and a reflection on how much remains to be done in this field, further addressing encouraging clues for the advance of DDR targeted therapy.

6.
Cancers (Basel) ; 13(7)2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33916029

RESUMEN

Melanoma is the deadliest form of skin cancer, primarily due to its high metastatic propensity and therapeutic resistance in advanced stages. The frequent inactivation of the p53 tumour suppressor protein in melanomagenesis may predict promising outcomes for p53 activators in melanoma therapy. Herein, we aimed to investigate the antitumor potential of the p53-activating agent SLMP53-2 against melanoma. Two- and three-dimensional cell cultures and xenograft mouse models were used to unveil the antitumor activity and the underlying molecular mechanism of SLMP53-2 in melanoma. SLMP53-2 inhibited the growth of human melanoma cells in a p53-dependent manner through induction of cell cycle arrest and apoptosis. Notably, SLMP53-2 induced p53 stabilization by disrupting the p53-MDM2 interaction, enhancing p53 transcriptional activity. It also promoted the expression of p53-regulated microRNAs (miRNAs), including miR-145 and miR-23a. Moreover, it displayed anti-invasive and antimigratory properties in melanoma cells by inhibiting the epithelial-to-mesenchymal transition (EMT), angiogenesis and extracellular lactate production. Importantly, SLMP53-2 did not induce resistance in melanoma cells. Additionally, it synergized with vemurafenib, dacarbazine and cisplatin, and resensitized vemurafenib-resistant cells. SLMP53-2 also exhibited antitumor activity in human melanoma xenograft mouse models by repressing cell proliferation and EMT while stimulating apoptosis. This work discloses the p53-activating agent SLMP53-2 which has promising therapeutic potential in advanced melanoma, either as a single agent or in combination therapy. By targeting p53, SLMP53-2 may counteract major features of melanoma aggressiveness.

7.
Antibiotics (Basel) ; 10(2)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673152

RESUMEN

Systemic mycoses are one major cause of morbidity/mortality among immunocompromised/debilitated individuals. Studying the mechanism of action is a strategy to develop safer/potent antifungals, warning resistance emergence. The major goal of this study was to elucidate the mechanism of action of three (Z)-5-amino-N'-aryl-1-methyl-1H-imidazole-4-carbohydrazonamides (2h, 2k, 2l) that had previously demonstrated strong antifungal activity against Candida krusei and C. albicans ATCC strains. Activity was confirmed against clinical isolates, susceptible or resistant to fluconazole by broth microdilution assay. Ergosterol content (HPLC-DAD), mitochondrial dehydrogenase activity (MTT), reactive oxygen species (ROS) generation (flow cytometry), germ tube inhibition and drug interaction were evaluated. None of the compounds inhibited ergosterol synthesis. Ascorbic acid reduced the antifungal effect of compounds and significantly decreased ROS production. The metabolic viability of C. krusei was significantly reduced for values of 2MIC. Compounds 2h and 2k caused a significant increase in ROS production for MIC values while for 2l a significant increase was only observed for concentrations above MIC. ROS production seems to be involved in antifungal activity and the higher activity against C. krusei versus C. albicans may be related to their unequal sensitivity to different ROS. No synergism with fluconazole or amphotericin was observed, but the association of 2h with fluconazole might be valuable due to the significant inhibition of the dimorphic transition, a C. albicans virulence mechanism.

8.
Br J Pharmacol ; 178(18): 3627-3647, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33899955

RESUMEN

BACKGROUND AND PURPOSE: Advances in the treatment of triple-negative breast and ovarian cancer remain challenging. In particular, resistance to the available therapy, by restoring or overexpressing the DNA repair machinery, has often been reported. New strategies to improve the therapeutic outcomes of these cancers are needed. Herein, we disclose the dregamine 5-bromo-pyridin-2-ylhydrazone (BBIT20), a natural monoterpene indole alkaloid derivative, as an inhibitor of homologous DNA repair. EXPERIMENTAL APPROACH: To unveil BBIT20 antitumour activity and underlying molecular mechanism of action, two-dimensional (2D) and three-dimensional (3D) cell cultures, patient-derived cell lines and xenograft mouse models were used. KEY RESULTS: BBIT20 disrupted the BRCA1-BARD1 interaction, triggering nuclear-to-cytoplasmic BRCA1 translocation, cell cycle arrest and downregulation of homologous DNA repair-related genes and proteins, with subsequent enhancement of DNA damage, reactive oxygen species generation and apoptosis, in triple-negative breast and ovarian cancer cells. BBIT20 also displayed pronounced antitumour activity in patient-derived cells and xenograft mouse models of ovarian cancer, with low toxicity in non-malignant cells and undetectable side effects in mice. Additionally, it did not induce resistance in triple-negative breast and ovarian cancer and displayed marked synergistic effects with cisplatin and olaparib (a poly [ADP-ribose] polymerase inhibitor), on 2D and 3D models of these cancer cells. CONCLUSION AND IMPLICATIONS: These findings add an inhibitor of the BRCA1-BARD1 interaction to the list of DNA-damaging agents. Importantly, either as a single agent or in combination therapy, BBIT20 reveals great potential in the personalized treatment of aggressive and resistant cancers, particularly triple-negative breast and advanced ovarian cancer.


Asunto(s)
Neoplasias Ováricas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Animales , Proteína BRCA1 , Línea Celular Tumoral , Reparación del ADN , Sinergismo Farmacológico , Femenino , Humanos , Ratones , Neoplasias Ováricas/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Proteínas Supresoras de Tumor , Ubiquitina-Proteína Ligasas
9.
Cell Rep ; 35(2): 108982, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852837

RESUMEN

Impairment of the p53 pathway is a critical event in cancer. Therefore, reestablishing p53 activity has become one of the most appealing anticancer therapeutic strategies. Here, we disclose the p53-activating anticancer drug (3S)-6,7-bis(hydroxymethyl)-5-methyl-3-phenyl-1H,3H-pyrrolo[1,2-c]thiazole (MANIO). MANIO demonstrates a notable selectivity to the p53 pathway, activating wild-type (WT)p53 and restoring WT-like function to mutant (mut)p53 in human cancer cells. MANIO directly binds to the WT/mutp53 DNA-binding domain, enhancing the protein thermal stability, DNA-binding ability, and transcriptional activity. The high efficacy of MANIO as an anticancer agent toward cancers harboring WT/mutp53 is further demonstrated in patient-derived cells and xenograft mouse models of colorectal cancer (CRC), with no signs of undesirable side effects. MANIO synergizes with conventional chemotherapeutic drugs, and in vitro and in vivo studies predict its adequate drug-likeness and pharmacokinetic properties for a clinical candidate. As a single agent or in combination, MANIO will advance anticancer-targeted therapy, particularly benefiting CRC patients harboring distinct p53 status.


Asunto(s)
Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Pirroles/farmacología , Tiazoles/farmacología , Proteína p53 Supresora de Tumor/genética , Animales , Antineoplásicos/síntesis química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Doxorrubicina/farmacología , Descubrimiento de Drogas , Sinergismo Farmacológico , Femenino , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Humanos , Ratones , Ratones Desnudos , Unión Proteica , Pirroles/síntesis química , Tiazoles/síntesis química , Proteína p53 Supresora de Tumor/agonistas , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Biochim Biophys Acta Rev Cancer ; 1873(1): 188339, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31917206

RESUMEN

Increasing emphasis has been given to prevention as a feasible approach to reduce the cancer burden. However, for its clinical success, further advances are required to identify effective chemopreventive agents. This review affords a critical and up-to-date discussion of issues related to cancer prevention, including an in-depth knowledge on BRCA1 and p53 tumor suppressor proteins as key molecular players. Indeed, it compiles the most recent advances on the topic, highlighting the unique potential of BRCA1 and p53 germline mutations as molecular biomarkers for risk assessment and targets for chemoprevention. Relevant evidences are herein provided supporting the effectiveness of distinct pharmacological agents in cancer prevention, by targeting BRCA1 and p53. Moreover, the rationale for using germline mutant BRCA1- or p53-related cancer syndromes as model systems to investigate effective chemopreventive agents is also addressed. Altogether, this work provides an innovative conception about the dependence on p53 and BRCA1 co-inactivation in tumor formation and development, emphasizing the relationship between these two proteins as an encouraging direction for future personalized pharmacological interventions in cancer prevention.


Asunto(s)
Proteína BRCA1/genética , Quimioprevención/métodos , Mutación de Línea Germinal , Neoplasias Ováricas/prevención & control , Tamoxifeno/uso terapéutico , Proteína p53 Supresora de Tumor/genética , Proteína BRCA1/metabolismo , Femenino , Humanos , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/uso terapéutico , Proteína p53 Supresora de Tumor/metabolismo
11.
Cancer Lett ; 446: 90-102, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30664963

RESUMEN

TAp73 is a key tumor suppressor protein, regulating the transcription of unique and shared p53 target genes with crucial roles in tumorigenesis and therapeutic response. As such, in tumors with impaired p53 signaling, like neuroblastoma, TAp73 activation represents an encouraging strategy, alternative to p53 activation, to suppress tumor growth and chemoresistance. In this work, we report a new TAp73-activating agent, the 1-carbaldehyde-3,4-dimethoxyxanthone (LEM2), with potent antitumor activity. Notably, LEM2 was able to release TAp73 from its interaction with both MDM2 and mutant p53, enhancing TAp73 transcriptional activity, cell cycle arrest, and apoptosis in p53-null and mutant p53-expressing tumor cells. Importantly, LEM2 displayed potent antitumor activity against patient-derived neuroblastoma cells, consistent with an activation of the TAp73 pathway. Additionally, potent synergistic effects were obtained for the combination of LEM2 with doxorubicin and cisplatin in patient-derived neuroblastoma cells. Collectively, besides its relevant contribution to the advance of TAp73 pharmacology, LEM2 may pave the way to improved therapeutic alternatives against neuroblastoma.


Asunto(s)
Antineoplásicos/farmacología , Neuroblastoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína Tumoral p73/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Xantonas/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Cisplatino/farmacología , Doxorrubicina/farmacología , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HT29 , Humanos , Mutación , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Proteínas Proto-Oncogénicas c-mdm2/genética , Transducción de Señal/efectos de los fármacos , Proteína Tumoral p73/genética , Proteína p53 Supresora de Tumor/genética
12.
Cancers (Basel) ; 11(8)2019 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-31405179

RESUMEN

Half of human cancers harbor TP53 mutations that render p53 inactive as a tumor suppressor. In these cancers, reactivation of mutant p53 (mutp53) through restoration of wild-type-like function constitutes a valuable anticancer therapeutic strategy. In order to search for mutp53 reactivators, a small library of tryptophanol-derived oxazoloisoindolinones was synthesized and the potential of these compounds as mutp53 reactivators and anticancer agents was investigated in human tumor cells and xenograft mouse models. By analysis of their anti-proliferative effect on a panel of p53-null NCI-H1299 tumor cells ectopically expressing highly prevalent mutp53, the compound SLMP53-2 was selected based on its potential reactivation of multiple structural mutp53. In mutp53-Y220C-expressing hepatocellular carcinoma (HCC) cells, SLMP53-2-induced growth inhibition was mediated by cell cycle arrest, apoptosis, and endoplasmic reticulum stress response. In these cells, SLMP53-2 restored wild-type-like conformation and DNA-binding ability of mutp53-Y220C by enhancing its interaction with the heat shock protein 70 (Hsp70), leading to the reestablishment of p53 transcriptional activity. Additionally, SLMP53-2 displayed synergistic effect with sorafenib, the only approved therapy for advanced HCC. Notably, it exhibited potent antitumor activity in human HCC xenograft mouse models with a favorable toxicological profile. Collectively, SLMP53-2 is a new mutp53-targeting agent with promising antitumor activity, particularly against HCC.

13.
Br J Pharmacol ; 175(20): 3947-3962, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30076608

RESUMEN

BACKGROUND AND PURPOSE: Impairment of the tumour suppressor p53 pathway is a major event in human cancers, making p53 activation one of the most attractive therapeutic strategies to halt cancer. Here, we have identified a new selective p53 activator and investigated its potential as an anticancer agent. EXPERIMENTAL APPROACH: Anti-proliferative activity of the (R)-tryptophanol-derived bicyclic lactam SYNAP was evaluated in a range of human cancer cells with different p53 status. The anticancer activity and mechanism of action of SYNAP was studied in two- and three-dimensional models of human colon adenocarcinoma HCT116 cells with wild-type p53 and corresponding p53-null isogenic derivative cells, alone and in combination with known chemotherapeutic agents. KEY RESULTS: SYNAP showed anti-proliferative effect in human cancer cells dependent on p53 status. In HCT116 cells, SYNAP caused p53-dependent growth inhibition, associated with cell cycle arrest and apoptosis, anti-migratory activity and regulation of the expression of p53 transcriptional targets. Data also indicated that SYNAP targeted p53, inhibiting its interaction with its endogenous inhibitors, murine double minute (MDM)2 and MDMX. Moreover, SYNAP sensitized colon cancer cells to the cytotoxic effect of known chemotherapeutic agents. SYNAP did not induce acquired or cross-resistance and re-sensitized doxorubicin-resistant colon cancer cells to chemotherapy. Additionally, SYNAP was non-genotoxic and had low cytotoxicity against normal cells. CONCLUSION AND IMPLICATIONS: SYNAP revealed encouraging anticancer activity, either alone or in combination with known chemotherapeutic agents, in colon cancer cells. Apart from its promising application in cancer therapy, SYNAP may provide a starting point for improved p53 activators.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias del Colon/tratamiento farmacológico , Lactamas/farmacología , Triptófano/análogos & derivados , Proteína p53 Supresora de Tumor/metabolismo , Antineoplásicos/uso terapéutico , Proteínas de Ciclo Celular , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Humanos , Lactamas/uso terapéutico , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Triptófano/farmacología , Triptófano/uso terapéutico
14.
Cell Death Dis ; 9(2): 23, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29348560

RESUMEN

Protein kinase C (PKC) isozymes play major roles in human diseases, including cancer. Yet, the poor understanding of isozymes-specific functions and the limited availability of selective pharmacological modulators of PKC isozymes have limited the clinical translation of PKC-targeting agents. Here, we report the first small-molecule PKCδ-selective activator, the 7α-acetoxy-6ß-benzoyloxy-12-O-benzoylroyleanone (Roy-Bz), which binds to the PKCδ-C1-domain. Roy-Bz potently inhibited the proliferation of colon cancer cells by inducing a PKCδ-dependent mitochondrial apoptotic pathway involving caspase-3 activation. In HCT116 colon cancer cells, Roy-Bz specifically triggered the translocation of PKCδ but not other phorbol ester responsive PKCs. Roy-Bz caused a marked inhibition in migration of HCT116 cells in a PKCδ-dependent manner. Additionally, the impairment of colonosphere growth and formation, associated with depletion of stemness markers, indicate that Roy-Bz also targets drug-resistant cancer stem cells, preventing tumor dissemination and recurrence. Notably, in xenograft mouse models, Roy-Bz showed a PKCδ-dependent antitumor effect, through anti-proliferative, pro-apoptotic, and anti-angiogenic activities. Besides, Roy-Bz was non-genotoxic, and in vivo it had no apparent toxic side effects. Collectively, our findings reveal a novel promising anticancer drug candidate. Most importantly, Roy-Bz opens the way to a new era on PKC biology and pharmacology, contributing to the potential redefinition of the structural requirements of isozyme-selective agents, and to the re-establishment of PKC isozymes as feasible therapeutic targets in human diseases.


Asunto(s)
Neoplasias del Colon/terapia , Proteína Quinasa C-delta/uso terapéutico , Neoplasias del Colon/patología , Humanos , Proteína Quinasa C-delta/farmacología
15.
Mol Oncol ; 11(6): 612-627, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28296148

RESUMEN

The transcription factor p53 plays a crucial role in cancer development and dissemination, and thus, p53-targeted therapies are among the most encouraging anticancer strategies. In human cancers with wild-type (wt) p53, its inactivation by interaction with murine double minute (MDM)2 and MDMX is a common event. Simultaneous inhibition of the p53 interaction with both MDMs is crucial to restore the tumor suppressor activity of p53. Here, we describe the synthesis of the new tryptophanol-derived oxazoloisoindolinone DIMP53-1 and identify its activity as a dual inhibitor of the p53-MDM2/X interactions using a yeast-based assay. DIMP53-1 caused growth inhibition, mediated by p53 stabilization and upregulation of p53 transcriptional targets involved in cell cycle arrest and apoptosis, in wt p53-expressing tumor cells, including MDM2- or MDMX-overexpressing cells. Importantly, DIMP53-1 inhibits the p53-MDM2/X interactions by potentially binding to p53, in human colon adenocarcinoma HCT116 cells. DIMP53-1 also inhibited the migration and invasion of HCT116 cells, and the migration and tube formation of HMVEC-D endothelial cells. Notably, in human tumor xenograft mice models, DIMP53-1 showed a p53-dependent antitumor activity through induction of apoptosis and inhibition of proliferation and angiogenesis. Finally, no genotoxicity or undesirable toxic effects were observed with DIMP53-1. In conclusion, DIMP53-1 is a novel p53 activator, which potentially binds to p53 inhibiting its interaction with MDM2 and MDMX. Although target-directed, DIMP53-1 has a multifunctional activity, targeting major hallmarks of cancer through its antiproliferative, proapoptotic, antiangiogenic, anti-invasive, and antimigratory properties. DIMP53-1 is a promising anticancer drug candidate and an encouraging starting point to develop improved derivatives for clinical application.


Asunto(s)
Antineoplásicos/farmacología , Isoindoles/farmacología , Terapia Molecular Dirigida , Proteínas Nucleares/antagonistas & inhibidores , Oxazoles/farmacología , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Proteínas de Ciclo Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células HCT116 , Humanos , Isoindoles/química , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Proteínas Nucleares/metabolismo , Oxazoles/química , Ftalimidas/química , Ftalimidas/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Ratas , Ratas Wistar , Proteína p53 Supresora de Tumor/metabolismo , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Drug Discov Today ; 21(4): 616-24, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26891980

RESUMEN

The p53 family proteins are among the most appealing targets for cancer therapy. A deeper understanding of the complex interplay that these proteins establish with murine double minute (MDM)2, MDMX, and mutant p53 could reveal new exciting therapeutic opportunities in cancer treatment. Here, we summarize the most relevant advances in the biology of p53 family protein-protein interactions (PPIs), and the latest pharmacological developments achieved from targeting these interactions. We also highlight the remarkable contributions of yeast-based assays to this research. Collectively, we emphasize promising strategies, based on the inhibition of p53 family PPIs, which have expedited anticancer drug development.


Asunto(s)
Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Saccharomyces cerevisiae , Proteína p53 Supresora de Tumor/metabolismo , Animales , Humanos , Neoplasias/tratamiento farmacológico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína p53 Supresora de Tumor/genética
17.
Oncotarget ; 7(4): 4326-43, 2016 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-26735173

RESUMEN

Restoration of the p53 pathway, namely by reactivation of mutant (mut) p53, represents a valuable anticancer strategy. Herein, we report the identification of the enantiopure tryptophanol-derived oxazoloisoindolinone SLMP53-1 as a novel reactivator of wild-type (wt) and mut p53, using a yeast-based screening strategy. SLMP53-1 has a p53-dependent anti-proliferative activity in human wt and mut p53R280K-expressing tumor cells. Additionally, SLMP53-1 enhances p53 transcriptional activity and restores wt-like DNA binding ability to mut p53R280K. In wt/mut p53-expressing tumor cells, SLMP53-1 triggers p53 transcription-dependent and mitochondrial apoptotic pathways involving BAX, and wt/mut p53 mitochondrial translocation. SLMP53-1 inhibits the migration of wt/mut p53-expressing tumor cells, and it shows promising p53-dependent synergistic effects with conventional chemotherapeutics. In xenograft mice models, SLMP53-1 inhibits the growth of wt/mut p53-expressing tumors, but not of p53-null tumors, without apparent toxicity. Collectively, besides the potential use of SLMP53-1 as anticancer drug, the tryptophanol-derived oxazoloisoindolinone scaffold represents a promissing starting point for the development of effective p53-reactivating drugs.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias del Colon/tratamiento farmacológico , Isoindoles/farmacología , Mutación/genética , Oxazoles/química , Oxazoles/farmacología , Piperidonas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Triptófano/análogos & derivados , Proteína p53 Supresora de Tumor/metabolismo , Animales , Antineoplásicos/química , Apoptosis , Western Blotting , Movimiento Celular , Proliferación Celular , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Ensayos Analíticos de Alto Rendimiento , Humanos , Técnicas para Inmunoenzimas , Isoindoles/química , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , ARN Mensajero/genética , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Triptófano/química , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Life Sci ; 142: 60-5, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26475964

RESUMEN

AIM: Chalcones are naturally occurring compounds with recognized anticancer activity. It was recently shown that the O-prenyl derivative (2) of 2'-hydroxy-3,4,4',5,6'-pentamethoxychalcone (1) had a remarkably increased cytotoxicity against human tumour cells compared to its precursor. With this study, we aimed to investigate the molecular mechanism underlying the improved tumour cytotoxicity of prenylchalcone 2. MAIN METHODS: The impact of chalcones 1 and 2 on p53-MDM2 interaction was investigated using yeast growth-inhibitory and p53 transactivation assays. Their tumour growth-inhibitory effects were assessed on human colon adenocarcinoma HCT116 cell lines with wild-type p53 and its p53-null derivative, followed by analysis of cell cycle and apoptosis. In tumour cells, the activation of a mitochondrial pathway was checked by analysis of reactive oxygen species generation, Bax mitochondrial translocation and cytochrome c release. Additionally, the up-regulation of p53 transcriptional activity was investigated through Western blot analysis of p53 target expression levels, and the disruption of the p53-MDM2 interaction was confirmed by co-immunoprecipitation. KEY FINDINGS: The potent cell tumour growth-inhibitory activity of prenylchalcone 2 was associated with the activation of a p53 pathway involving cell cycle arrest and a mitochondria-dependent apoptosis. Furthermore, a correlation between the distinct cytotoxicity of chalcones 1 and 2 and their ability to disrupt the p53-MDM2 interaction was established. SIGNIFICANCE: This work shows that prenylation is a determinant factor for the enhancement of chalcones tumour cytotoxicity by improving their ability to disrupt the p53-MDM2 interaction. Prenylchalcone 2 represents a starting basis for the design of new p53-MDM2 interaction inhibitors with improved antitumor properties.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Chalconas/farmacología , Neoplasias del Colon/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Humanos , Proteínas Proto-Oncogénicas c-mdm2/genética , Activación Transcripcional/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética
19.
Eur J Pharm Sci ; 66: 138-47, 2015 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-25312347

RESUMEN

One of the most appealing targets for anticancer treatment is the p53 tumor suppressor protein. In half of human cancers, this protein is inactivated due to endogenous negative regulators such as MDM2. Actually, restoring the p53 activity, particularly through the inhibition of its interaction with MDM2, is considered a valuable therapeutic strategy against cancers with a wild-type p53 status. In this work, we report the synthesis of nine enantiopure phenylalaninol-derived oxazolopyrrolidone lactams and the evaluation of their biological effects as p53-MDM2 interaction inhibitors. Using a yeast-based screening assay, two oxazoloisoindolinones, compounds 1b and 3a, were identified as potential p53-MDM2 interaction inhibitors. The molecular mechanism of oxazoloisoindolinone 3a was further validated in human colon adenocarcinoma HCT116 cells with wild-type p53 (HCT116 p53(+/+)) and in its isogenic derivative without p53 (HCT116 p53(-/-)). Indeed, using these cells, we demonstrated that oxazoloisoindolinone 3a exhibited a p53-dependent in vitro antitumor activity through induction of G0/G1-phase cell cycle arrest and apoptosis. The selective activation of a p53-apoptotic pathway by oxazoloisoindolinone 3a was further supported by the occurrence of PARP cleavage only in p53-expressing HCT116 cells. Moreover, oxazoloisoindolinone 3a led to p53 protein stabilization and to the up-regulation of p53 transcriptional activity with increased expression levels of several p53 target genes, as p21(WAF1/CIP1), MDM2, BAX and PUMA, in p53(+/+) but not in p53(-/-) HCT116 cells. Additionally, the ability of oxazoloisoindolinone 3a to block the p53-MDM2 interaction in HCT116 p53(+/+) cells was confirmed by co-immunoprecipitation. Finally, the molecular docking analysis of the interactions between the synthesized compounds and MDM2 revealed that oxazoloisoindolinone 3a binds to MDM2. Altogether, this work adds, for the first time, the oxazoloisoindolinone scaffold to the list of chemotypes activators of a wild-type p53-pathway with promising antitumor activity. Moreover, it may open the way to the development of a new class of p53-MDM2 interaction inhibitors.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Isoindoles/química , Isoindoles/farmacología , Oxazoles/química , Oxazoles/farmacología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Simulación por Computador , Computadores Moleculares , Técnicas de Inactivación de Genes , Células HCT116 , Humanos , Modelos Moleculares , Estructura Molecular , Unión Proteica , Conformación Proteica , Proteínas Proto-Oncogénicas c-mdm2/genética , Saccharomyces cerevisiae/efectos de los fármacos , Relación Estructura-Actividad , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA