Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 63(5): 2766-2775, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38253002

RESUMEN

The first hydride-doped Pd/Ag superatoms stabilized by selenolates are reported: [PdHAg19(dsep)12] [dsep = Se2P(OiPr)2] 1 and [PdHAg20(dsep)12]+ 2. 1 was derived from the targeted transformation of [PdHAg19(dtp)12] [dtp = S2P(OiPr)2] by ligand exchange, whereas 2 was obtained from the addition of trifluoroacetic acid to 1, resulting in a symmetric redistribution of the capping silver atoms. The transformations are all achieved while retaining an 8-electron superatomic configuration. VT-NMR attests to the good stability of the NCs in solution, and single-crystal X-ray diffraction reveals the crucial role that the interstitial hydride plays in directing the position of the capping silver atoms. The total structures are reported alongside their electronic and optical properties. 1 and 2 are phosphorescent with a lifetime of 73 and 84 µs at 77 K, respectively. The first antibacterial activity data for superatomic bimetallic Pd/Ag nanoclusters are also reported.

2.
Pharmaceutics ; 16(9)2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39339158

RESUMEN

Natural photosensitizers (PS) are compounds derived from nature, with photodynamic properties. Natural PSs have a similar action to that of commercial PSs, where cancer cell death occurs by necrosis, apoptosis, and autophagy through ROS generation. Natural PSs have garnered great interest over the last few decades because of their high biocompatibility and good photoactivity. Specific wavelengths could cause phytochemicals to produce harmful ROS for photodynamic therapy (PDT). However, natural PSs have some shortcomings, such as reduced solubility and lower uptake, making them less appropriate for PDT. Nanotechnology offers an opportunity to develop suitable carriers for various natural PSs for PDT applications. Various nanoparticles have been developed to improve the outcome with enhanced solubility, optical adsorption, and tumor targeting. Multidrug resistance (MDR) is a phenomenon in which tumor cells develop resistance to a wide range of structurally and functionally unrelated drugs. Over the last decade, several researchers have extensively studied the effect of natural PS-based photodynamic treatment (PDT) on MDR cells. Though the outcomes of clinical trials for natural PSs were inconclusive, significant advancement is still required before PSs can be used as a PDT agent for treating MDR tumors. This review addresses the increasing literature on MDR tumor progression and the efficacy of PDT, emphasizing the importance of developing new nano-based natural PSs in the fight against MDR that have the required features for an MDR tumor photosensitizing regimen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA