Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Cell Biochem ; 123(6): 1032-1052, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35416329

RESUMEN

In Saccharomyces cerevisiae, the transcription factor GCR1 plays a vital role in carbohydrate metabolism and in the current study we tried to elucidate its role in lipid metabolism. In silico analysis revealed the upstream activation sequence (UAS) in the promoter region of OPI3 possessed six conserved recognition sequences for Gcr1p and the ChIP assay confirmed the binding of Gcr1p on the OPI3 promoter region. The real-time quantitative polymerase chain reaction and promoter-reporter activity revealed a substantial reduction in OPI3 expression and was supported with decreased phosphatidylcholine (PC) level that is rescued with exogenous choline supplementation in gcr1∆ cells. Simultaneously, there was an increase in triacylglycerol level, accompanied with increased number and size of lipid droplets in gcr1∆ cells. The expression of pT1, pT2 truncations in opi3∆ cells revealed the -1 to -500 bp in the promoter region is essential for the activation of OPI3 transcription. The mutation specifically at UASCT box (-265) in the OPI3 promoter region displayed a reduction in the PC level and the additional mutation at UASINO (-165) further reduced the PC level. Collectively, our data suggest that the GCR1 transcription factor also regulates the OPI3 expression and has an impact on lipid homeostasis.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Fosfatidiletanolamina N-Metiltransferasa/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética
2.
J Biol Chem ; 292(33): 13727-13744, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28655762

RESUMEN

N6-Methyladenosine (m6A) is among the most common modifications in eukaryotic mRNA. The role of yeast m6A methyltransferase, Ime4, in meiosis and sporulation in diploid strains is very well studied, but its role in haploid strains has remained unknown. Here, with the help of an immunoblotting strategy and Ime4-GFP protein localization studies, we establish the physiological role of Ime4 in haploid cells. Our data showed that Ime4 epitranscriptionally regulates triacylglycerol metabolism and vacuolar morphology through the long-chain fatty acyl-CoA synthetase Faa1, independently of the RNA methylation complex (MIS complex). The MIS complex consists of the Ime4, Mum2, and Slz1 proteins. Our affinity enrichment strategy (methylated RNA immunoprecipitation assays) using m6A polyclonal antibodies coupled with mRNA isolation, quantitative real-time PCR, and standard PCR analyses confirmed the presence of m6A-modified FAA1 transcripts in haploid yeast cells. The term "epitranscriptional regulation" encompasses the RNA modification-mediated regulation of genes. Moreover, we demonstrate that the Aft2 transcription factor up-regulates FAA1 expression. Because the m6A methylation machinery is fundamentally conserved throughout eukaryotes, our findings will help advance the rapidly emerging field of RNA epitranscriptomics. The metabolic link identified here between m6A methylation and triacylglycerol metabolism via the Ime4 protein provides new insights into lipid metabolism and the pathophysiology of lipid-related metabolic disorders, such as obesity. Because the yeast vacuole is an analogue of the mammalian lysosome, our findings pave the way to better understand the role of m6A methylation in lysosome-related functions and diseases.


Asunto(s)
Factor de Transcripción Activador 2/metabolismo , Coenzima A Ligasas/metabolismo , Metiltransferasas/metabolismo , Procesamiento Postranscripcional del ARN , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Vacuolas/metabolismo , Factor de Transcripción Activador 2/genética , Sustitución de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Coenzima A Ligasas/genética , Diploidia , Epigénesis Genética , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Haploidia , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Metilación , Metiltransferasas/química , Metiltransferasas/genética , Microscopía Electrónica de Rastreo , Mutagénesis Sitio-Dirigida , Mutación , Tamaño de los Orgánulos , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Triglicéridos/metabolismo , Vacuolas/ultraestructura
3.
J Biol Chem ; 292(45): 18628-18643, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-28924051

RESUMEN

The transcription factors Msn2 and Msn4 (multicopy suppressor of SNF1 mutation proteins 2 and 4) bind the stress-response element in gene promoters in the yeast Saccharomyces cerevisiae However, the roles of Msn2/4 in primary metabolic pathways such as fatty acid ß-oxidation are unclear. Here, in silico analysis revealed that the promoters of most genes involved in the biogenesis, function, and regulation of the peroxisome contain Msn2/4-binding sites. We also found that transcript levels of MSN2/MSN4 are increased in glucose-depletion conditions and that during growth in nonpreferred carbon sources, Msn2 is constantly localized to the nucleus in wild-type cells. Of note, the double mutant msn2Δmsn4Δ exhibited a severe growth defect when grown with oleic acid as the sole carbon source and had reduced transcript levels of major ß-oxidation genes. ChIP indicated that Msn2 has increased occupancy on the promoters of ß-oxidation genes in glucose-depleted conditions, and in vivo reporter gene analysis indicated reduced expression of these genes in msn2Δmsn4Δ cells. Moreover, mobility shift assays revealed that Msn4 binds ß-oxidation gene promoters. Immunofluorescence microscopy with anti-peroxisome membrane protein antibodies disclosed that the msn2Δmsn4Δ strain had fewer peroxisomes than the wild type, and lipid analysis indicated that the msn2Δmsn4Δ strain had increased triacylglycerol and steryl ester levels. Collectively, our data suggest that Msn2/Msn4 transcription factors activate expression of the genes involved in fatty acid oxidation. Because glucose sensing, signaling, and fatty acid ß-oxidation pathways are evolutionarily conserved throughout eukaryotes, the msn2Δmsn4Δ strain could therefore be a good model system for further study of these critical processes.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Regulación Bacteriana de la Expresión Génica , Peroxisomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Factores de Transcripción/metabolismo , Liberación del Virus , Transporte Activo de Núcleo Celular , Sitios de Unión , Biología Computacional , Proteínas de Unión al ADN/genética , Ésteres/metabolismo , Sistemas Especialistas , Ácidos Grasos no Esterificados/efectos adversos , Eliminación de Gen , Perfilación de la Expresión Génica , Ácido Oléico/efectos adversos , Ácido Oléico/metabolismo , Biogénesis de Organelos , Oxidación-Reducción , Peroxisomas/enzimología , Regiones Promotoras Genéticas , Proteínas Recombinantes/metabolismo , Elementos de Respuesta , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Esteroles/metabolismo , Factores de Transcripción/genética , Triglicéridos/metabolismo
4.
Biochem Biophys Res Commun ; 507(1-4): 155-160, 2018 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-30415772

RESUMEN

Brown adipose tissue (BAT) is the site of non-shivering thermogenesis in mammals, wherein energy is dissipated as heat. We observed that aqueous extract of black sesame seed triggers an increase in the expression of Uncoupling Protein 1 (UCP1) in brown adipocytes from mice. The active component from the extract was purified and identified to be sesaminol diglucoside (SDG). SDG treatment decreased mass of white fat pads and serum glucose levels and increased UCP1 levels in BAT thereby protecting mice against high fat induced weight gain. Further in silico and in vitro studies revealed that these effects are due to the agonist like behaviour of SDG towards beta 3 adrenergic receptors (ß3-AR). Together, our results suggest that SDG induces BAT mediated thermogenesis through ß3-AR and protects mice against diet-induced obesity.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Dioxoles/farmacología , Furanos/farmacología , Lignanos/farmacología , Semillas/química , Sesamum/química , Termogénesis/efectos de los fármacos , Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Animales , Dieta Alta en Grasa , Dioxoles/aislamiento & purificación , Furanos/aislamiento & purificación , Lípidos/química , Ratones Endogámicos C57BL , Extractos Vegetales/farmacología , Receptores Adrenérgicos beta 3/metabolismo , Proteína Desacopladora 1/metabolismo , Aumento de Peso/efectos de los fármacos
5.
Curr Genet ; 64(2): 353-357, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28975387

RESUMEN

In eukaryotes, the precise transcriptional and post-transcriptional regulations of gene expression are crucial for the developmental processes. More than 100 types of post-transcriptional RNA modifications have been identified in eukaryotes. The deposition of N6-methyladenosine (m6A) into mRNA is among the most common post-transcriptional RNA modifications known in eukaryotes. It has been reported that m6A RNA modification can regulate gene expression. The role of yeast m6A methyltransferase (Ime4) in meiosis and sporulation in diploid cells is very well proven, but its physiological role in haploid cells has remained unknown until recently. Previously, we have shown that Ime4 epitranscriptionally regulates triacylglycerol (TAG) metabolism and vacuolar morphology in haploid cells. Mitochondrial dysfunction leads to TAG accumulation as lipid droplets (LDs) in the cells; besides, LDs are physically connected to the mitochondria. As of now there are no reports on the role of Ime4 in mitochondrial biology. Here we report the important role played by Ime4 in the mitochondrial morphology and functions in Saccharomyces cerevisiae. The confocal microscopic analysis showed that IME4 gene deletion causes mitochondrial fragmentation; besides, the ime4Δ cells showed a significant decrease in cytochrome c oxidase and citrate synthase activities compared to the wild-type cells. IME4 gene deletion causes mitochondrial dysfunction, and it will be interesting to find out the target genes of Ime4 related to the mitochondrial biology. The determination of the role of Ime4 and its targets in mitochondrial biology could probably help in formulating potential cures for the mitochondria-linked rare genetic disorders.


Asunto(s)
Metiltransferasas/genética , Procesamiento Postranscripcional del ARN/genética , Transcripción Genética , Adenosina/análogos & derivados , Adenosina/genética , Regulación Fúngica de la Expresión Génica , Meiosis/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Saccharomyces cerevisiae/genética , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Triglicéridos/metabolismo , Vacuolas/genética , Vacuolas/metabolismo
6.
Curr Genet ; 64(5): 1071-1087, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29536156

RESUMEN

Cell size and morphology are key adaptive features that influence almost all aspects of cellular physiology such as cell cycle and lipid metabolism. Here we report the role of a transcription factor Suppressor Phenotype of Ty elements insertion 10 (SPT10) of Saccharomyces cerevisiae in regulating cell cycle, cell size and lipid metabolism in concert, in addition to its defined role of histone gene expression. Morphological and biochemical analyses of spt10Δ strain show an abnormal cell size, cell cycle and lipid levels. The expression of Spt10p in spt10Δ strain helps the cell revert to typical wild-type phenotypes. SPT10 controls lipid metabolism by negatively regulating the expression of lipid biosynthetic genes, and positively regulating the expression of the lipid hydrolyzing genes. Spt10p helps in maintaining the cell size by regulating the amount of carbon flux into the phospholipid constituents of the cell membranes. On the contrary, storage lipids have no role in regulating the cell size. An exogenous supply of phosphatidic acid increases the cell size, proving the positive impact of the phospholipids on cell size modulation. SPT10 affects cell cycle, cell size and lipid metabolism by an orchestrated transcriptional regulation of the corresponding genes.


Asunto(s)
Histona Acetiltransferasas/metabolismo , Metabolismo de los Lípidos , Fosfolípidos/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Carbono/metabolismo , Ciclo Celular , ADN de Hongos/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Prueba de Complementación Genética , Metabolismo de los Lípidos/genética , Lípidos/biosíntesis , Ácidos Fosfatidicos/farmacología , Unión Proteica , Saccharomyces cerevisiae/genética , Transcripción Genética , Regulación hacia Arriba
7.
Curr Genet ; 64(2): 417-422, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29043484

RESUMEN

The precise and controlled regulation of gene expression at transcriptional and post-transcriptional levels is crucial for the eukaryotic cell survival and functions. In eukaryotes, more than 100 types of post-transcriptional RNA modifications have been identified. The N6-methyladenosine (m6A) modification in mRNA is among the most common post-transcriptional RNA modifications known in eukaryotic organisms, and the m6A RNA modification can regulate gene expression. The role of yeast m6A methyltransferase (Ime4) in meiosis, sporulation, triacylglycerol metabolism, vacuolar morphology, and mitochondrial functions has been reported. Stress triggers triacylglycerol accumulation as lipid droplets. Lipid droplets are physically connected to the different organelles such as endoplasmic reticulum, mitochondria, and peroxisomes. However, the physiological relevance of these physical interactions remains poorly understood. In yeast, peroxisome is the sole site of fatty acid ß-oxidation. The metabolic status of the cell readily governs the number and physiological function of peroxisomes. Under low-glucose or stationary-phase conditions, peroxisome biogenesis and proliferation increase in the cells. Therefore, we hypothesized a possible role of Ime4 in the peroxisomal functions. There is no report on the role of Ime4 in peroxisomal biology. Here, we report that IME4 gene deletion causes peroxisomal dysfunction under stationary-phase conditions in Saccharomyces cerevisiae; besides, the ime4Δ cells showed a significant decrease in the expression of the key genes involved in peroxisomal ß-oxidation compared to the wild-type cells. Therefore, identification and determination of the target genes of Ime4 that are directly involved in the peroxisomal biogenesis, morphology, and functions will pave the way to better understand the role of m6A methylation in peroxisomal biology.


Asunto(s)
Adenosina/análogos & derivados , Ácidos Grasos/genética , Metiltransferasas/genética , Peroxisomas/genética , Proteínas de Saccharomyces cerevisiae/genética , 3-Hidroxiacil-CoA Deshidrogenasas/genética , Acetil-CoA C-Aciltransferasa/genética , Adenosina/genética , Adenosina/metabolismo , Isomerasas de Doble Vínculo Carbono-Carbono/genética , Enoil-CoA Hidratasa/genética , Ácidos Grasos/metabolismo , Regulación Fúngica de la Expresión Génica/genética , Metabolismo de los Lípidos/genética , Metiltransferasas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Peroxisomas/enzimología , Procesamiento Postranscripcional del ARN/genética , Racemasas y Epimerasas/genética , Saccharomyces cerevisiae/genética , Vacuolas/enzimología , Vacuolas/genética
8.
Planta ; 248(2): 347-367, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29736624

RESUMEN

MAIN CONCLUSION: Portulaca leaves serve as an alternative bioresource for edible PUFAs. Transcriptome data provide information to explore Portulaca as a model system for galactolipids, leaf lipid metabolism, and PUFA-rich designer lipids. Poly-unsaturated fatty acids (PUFAs) are gaining importance due to their innumerable health benefits, and hence, understanding their biosynthesis in plants has attained prominence in recent years. The most common source of PUFAs is of marine origin. Although reports have identified Portulaca oleracea (purslane) as a leaf source of omega-3 fatty acids in the form of alpha-linolenic acid (ALA), the mechanism of ALA accumulation and its distribution into various lipids has not been elucidated. Here, we present the lipid profiles of leaves and seeds of several accessions of P. oleracea. Among the nineteen distinct accessions, the RR04 accession has the highest amount of ALA and is primarily associated with galactolipids. In addition, we report the transcriptome of RR04, and we have mapped the potential genes involved in lipid metabolism. Phosphatidylcholine (PC) is the major site of acyl editing, which is catalyzed by lysophosphatidylcholine acyltransferase (LPCAT), an integral membrane protein that plays a major role in supplying oleate to the PC pool for further unsaturation. Our investigations using mass spectrometric analysis of leaf microsomal fractions identified LPCAT as part of a membrane protein complex. Both native and recombinant LPCAT showed strong acyltransferase activity with various acyl-CoA substrates. Altogether, the results suggest that ALA-rich glycerolipid biosynthetic machinery is highly active in nutritionally important Portulaca leaves. Furthermore, lipidome, transcriptome, and mass spectrometric analyses of RR04 provide novel information for exploring Portulaca as a potential resource and a model system for studying leaf lipid metabolism.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Lípidos/análisis , Hojas de la Planta/metabolismo , Portulaca/genética , Portulaca/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , Escherichia coli/genética , Ácidos Grasos/análisis , Perfilación de la Expresión Génica , Metabolismo de los Lípidos/genética , Microsomas/enzimología , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas/metabolismo
9.
J Biol Chem ; 291(35): 18562-81, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27402848

RESUMEN

The DDHD domain-containing proteins, which belong to the intracellular phospholipase A1 (iPLA1) family, have been predicted to be involved in phospholipid metabolism, lipid trafficking, membrane turnover, and signaling. Defective cardiolipin (CL), phosphatidylethanolamine, and phosphatidylglycerol remodeling cause Barth syndrome and mitochondrial dysfunction. Here, we report that Yor022c is a Ddl1 (DDHD domain-containing lipase 1) that hydrolyzes CL, phosphatidylethanolamine, and phosphatidylglycerol. Ddl1 has been implicated in the remodeling of mitochondrial phospholipids and CL degradation. Our data also suggested that the accumulation of monolysocardiolipin is deleterious to the cells. We show that Aft1 and Aft2 transcription factors antagonistically regulate the DDL1 gene. This study reveals that the misregulation of DDL1 by Aft1/2 transcription factors alters CL metabolism and causes mitochondrial dysfunction in the cells. In humans, mutations in the DDHD1 and DDHD2 genes cause specific types of hereditary spastic paraplegia (SPG28 and SPG54, respectively), and the yeast DDL1-defective strain produces similar phenotypes of hereditary spastic paraplegia (mitochondrial dysfunction and defects in lipid metabolism). Therefore, the DDL1-defective strain could be a good model system for understanding hereditary spastic paraplegia.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Lipasa/biosíntesis , Mitocondrias/enzimología , Proteínas Mitocondriales/biosíntesis , Saccharomyces cerevisiae/enzimología , Lipasa/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Mol Microbiol ; 100(1): 55-75, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26711224

RESUMEN

The transcriptional activator Zap1p maintains zinc homeostasis in Saccharomyces cerevisiae. In this study, we examined the role of Zap1p in triacylglycerol (TAG) metabolism. The expression of ETR1 is reduced in zap1Δ. The altered expression of ETR1 results in reduced mitochondrial fatty acid biosynthesis and reduction in lipoic acid content in zap1Δ. The transcription factor Zap1 positively regulates ETR1 expression. Deletion of ETR1 also causes the accumulation of TAG, and the introduction of ETR1 in zap1Δ strain rescues the TAG level. These results demonstrated that the compromised mitochondrial fatty acid biosynthesis causes a reduction in lipoic acid and loss of mitochondrial function in zap1Δ. Functional mitochondria are required for the ATP production and defect in mitochondria slow down the process which may channeled carbon towards lipid biosynthesis and stored in the form of TAG.


Asunto(s)
Ácidos Grasos/biosíntesis , Regulación Fúngica de la Expresión Génica , Mitocondrias/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triglicéridos/metabolismo , Sitios de Unión , Vías Biosintéticas , Carbono/metabolismo , Medios de Cultivo , Enoil-ACP Reductasa (NADPH Específica B)/genética , Eliminación de Gen , Mitocondrias/genética , Mutación , Regiones Promotoras Genéticas , Unión Proteica , Saccharomyces cerevisiae/crecimiento & desarrollo , Transcripción Genética , Zinc/metabolismo
11.
Biochem Biophys Res Commun ; 487(4): 875-880, 2017 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-28465236

RESUMEN

Mammalian alpha/beta hydrolase domain (ABHD) family of proteins have emerged as key regulators of lipid metabolism and are found to be associated with human diseases. Human α/ß-hydrolase domain containing protein 11 (ABHD11) has recently been predicted as a potential biomarker for human lung adenocarcinoma. In silico analyses of the ABHD11 protein sequence revealed the presence of a conserved lipase motif GXSXG. However, the role of ABHD11 in lipid metabolism is not known. To understand the biological function of ABHD11, we heterologously expressed the human ABHD11 in budding yeast, Saccharomyces cerevisiae. In vivo [14C]acetate labeling of cellular lipids in yeast cells overexpressing ABHD11 showed a decrease in triacylglycerol content. Overexpression of ABHD11 also alters the molecular species of triacylglycerol in yeast. Similar activity was observed in its yeast homolog, Ygr031w. The role of the conserved lipase motif in the hydrolase activity was proven by the mutation of all conserved amino acid residues of GXSXG motif. Collectively, our results demonstrate that human ABHD11 and its yeast homolog YGR031W have a pivotal role in the lipid metabolism.


Asunto(s)
Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Serina Proteasas/metabolismo , Humanos , Metabolismo de los Lípidos , Saccharomyces cerevisiae/citología
12.
Curr Genet ; 63(6): 977-982, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28500379

RESUMEN

Zinc is an essential micronutrient for all living cells. It serves as a structural and catalytic cofactor for numerous proteins, hence maintaining a proper level of cellular zinc is essential for normal functioning of the cell. Zinc homeostasis is sustained through various ways under severe zinc-deficient conditions. Zinc-dependent proteins play an important role in biological systems and limitation of zinc causes a drastic change in their expression. In budding yeast, a zinc-responsive transcription factor Zap1p controls the expression of genes required for uptake and mobilization of zinc under zinc-limiting conditions. It also regulates the polar lipid levels under zinc-limiting conditions to maintain membrane integrity. Deletion of ZAP1 causes an increase in triacylglyerol levels which is due to the increased biosynthesis of acetate that serves as a precursor for triacylglycerol biosynthesis. In this review, we expanded our recent work role of Zap1p in nonpolar lipid metabolism of budding yeast.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Metabolismo de los Lípidos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Triglicéridos/biosíntesis , Zinc/deficiencia , Acetatos/metabolismo , Enoil-ACP Reductasa (NADPH Específica B)/genética , Enoil-ACP Reductasa (NADPH Específica B)/metabolismo , Eliminación de Gen , Mitocondrias/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/deficiencia , Transcripción Genética
13.
Plant Physiol ; 170(1): 180-93, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26589672

RESUMEN

Alpha/beta hydrolase domain (ABHD)-containing proteins are structurally related with diverse catalytic activities. In various species, some ABHD proteins have been characterized and shown to play roles in lipid homeostasis. However, little is known about ABHD proteins in plants. Here, we characterized AT4G10030 (AtABHD11), an Arabidopsis (Arabidopsis thaliana) homolog of a human ABHD11 gene. In silico analyses of AtABHD11 revealed homology with other plant species with a conserved GXSXG lipid motif. Interestingly, Arabidopsis abhd11 mutant plants exhibited an enhanced growth rate compared with wild-type plants. Quantitative analyses of the total lipids showed that the mutant abhd11 has a high amount of phospholipid and galactolipid in Arabidopsis leaves. The overexpression of AtABHD11 in Escherichia coli led to a reduction in phospholipid levels. The bacterially expressed recombinant AtABHD11 hydrolyzed lyso(phospho)lipid and monoacylglycerol. Furthermore, using whole-genome microarray and real-time PCR analyses of abhd11 and wild-type plants, we noted the up-regulation of MGD1, -2, and -3 and DGD1. Together, these findings suggested that AtABHD11 is a lyso(phospho)lipase. The disruption of AtABHD11 caused the accumulation of the polar lipids in leaves, which in turn promoted a higher growth rate compared with wild-type plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Metabolismo de los Lípidos/genética , Hojas de la Planta/metabolismo , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Escherichia coli/genética , Regulación de la Expresión Génica de las Plantas , Homocigoto , Hidrolasas/genética , Hidrolasas/metabolismo , Lípidos/química , Lípidos/genética , Datos de Secuencia Molecular , Mutación , Fosfolípidos/genética , Fosfolípidos/metabolismo , Hojas de la Planta/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Regulación hacia Arriba
14.
Mol Cell Biochem ; 434(1-2): 89-103, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28432553

RESUMEN

In yeast, the synthesis of cardiolipin (CL) and phosphatidylethanolamine (PE) occurs mainly in mitochondria. CL and PE have overlapping functions, and they are required for mitochondrial function. PE is physiologically linked with triacylglycerol (TAG) metabolism in Saccharomyces cerevisiae, involving an acyl-CoA-independent pathway through the phospholipid:diacylglycerol acyltransferase activity of the Lro1 protein. There is no report on the physiological link between CL and TAG metabolism. Here we report a metabolic link between CL and TAG accumulation in the S. cerevisiae. Our data indicated that CL deficiency causes TAG accumulation, involving an acyl-CoA-dependent pathway through the diacylglycerol acyltransferase activity of the Dga1 protein with no changes in the TAG molecular species. The DGA1 gene deletion from the CL-deficient strains reduced the TAG levels. Data from in vitro and in vivo analyses showed that CL did not affect the enzymatic activity of Dga1. Our data also showed that CL deficiency leads to the up-regulation of acetyl-CoA synthetase genes (ACS1 and ACS2) of the cytosolic pyruvate dehydrogenase bypass pathway. This study establishes a physiological link between CL and TAG metabolism in S. cerevisiae.


Asunto(s)
Cardiolipinas/genética , Saccharomyces cerevisiae/metabolismo , Triglicéridos/metabolismo , Cardiolipinas/metabolismo , Genes Fúngicos , Microscopía Confocal , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Espectrometría de Masas en Tándem
15.
Mol Microbiol ; 98(3): 456-72, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26179227

RESUMEN

In Saccharomyces cerevisiae, PHM8 encodes a phosphatase that catalyses the dephosphorylation of lysophosphatidic acids to monoacylglycerol and nucleotide monophosphate to nucleoside and releases free phosphate. In this report, we investigated the role of PHM8 in triacylglycerol metabolism and its transcriptional regulation by a phosphate responsive transcription factor Pho4p under low-phosphate conditions. We found that the wild-type (BY4741) cells accumulate triacylglycerol and the expression of PHM8 was high under low-phosphate conditions. Overexpression of PHM8 in the wild-type, phm8Δ and quadruple phosphatase mutant (pah1Δdpp1Δlpp1Δapp1Δ) caused an increase in the triacylglycerol levels. However, the introduction of the PHM8 deletion into the quadruple phosphatase mutant resulted in a reduction in triacylglycerol levels and LPA phosphatase activity. The transcriptional activator Pho4p binds to the PHM8 promoter under low-phosphate conditions, activating PHM8 expression, which leads to the formation of monoacylglycerol from LPA. The synthesized monoacylglycerol is acylated to diacylglycerol by Dga1p, which is further acylated to triacylglycerol by the same enzyme.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Lisofosfolípidos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Triglicéridos/metabolismo , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Metabolismo de los Lípidos , Fosfatos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
16.
Curr Genet ; 62(4): 841-851, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26979516

RESUMEN

PHM8 is a very important enzyme in nonpolar lipid metabolism because of its role in triacylglycerol (TAG) biosynthesis under phosphate stress conditions. It is positively regulated by the PHO4 transcription factor under low phosphate conditions; however, its regulation has not been explored under normal physiological conditions. General control nonderepressible (GCN4), a basic leucine-zipper transcription factor activates the transcription of amino acids, purine biosynthesis genes and many stress response genes under various stress conditions. In this study, we demonstrate that the level of TAG is regulated by the transcription factor GCN4. GCN4 directly binds to its consensus recognition sequence (TGACTC) in the PHM8 promoter and controls its expression. The analysis of cells expressing the P PHM8 -lacZ reporter gene showed that mutations (TGACTC-GGGCCC) in the GCN4-binding sequence caused a significant increase in ß-galactosidase activity. Mutation in the GCN4 binding sequence causes an increase in PHM8 expression, lysophosphatidic acid phosphatase activity and TAG level. PHM8, in conjunction with DGA1, a mono- and diacylglycerol transferase, controls the level of TAG. These results revealed that GCN4 negatively regulates PHM8 and that deletion of GCN4 causes de-repression of PHM8, which is responsible for the increased TAG content in gcn4∆ cells.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Triglicéridos/metabolismo , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Metabolismo de los Lípidos , Metabolómica/métodos , Mutación , Regiones Promotoras Genéticas , Unión Proteica
17.
Curr Genet ; 62(2): 301-7, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26615590

RESUMEN

Inorganic phosphate is an essential nutrient because it is required for the biosynthesis of nucleotides, phospholipids and metabolites in energy metabolism. During phosphate starvation, phosphatases play a major role in phosphate acquisition by hydrolyzing phosphorylated macromolecules. In Saccharomyces cerevisiae, PHM8 (YER037W), a lysophosphatidic acid phosphatase, plays an important role in phosphate acquisition by hydrolyzing lysophosphatidic acid and nucleotide monophosphate that results in accumulation of triacylglycerol and nucleotides under phosphate limiting conditions. Under phosphate limiting conditions, it is transcriptionally regulated by Pho4p, a phosphate-responsive transcription factor. In this review, we focus on triacylglycerol metabolism in transcription factors deletion mutants involved in phosphate metabolism and propose a link between phosphate and triacylglycerol metabolism. Deletion of these transcription factors results in an increase in triacylglycerol level. Based on these observations, we suggest that PHM8 is responsible for the increase in triacylglycerol in phosphate metabolising gene deletion mutants.


Asunto(s)
Monoéster Fosfórico Hidrolasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Humanos , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Factores de Transcripción/metabolismo
18.
FEMS Yeast Res ; 16(1): fov109, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26678749

RESUMEN

Saccharomyces cerevisiae is an excellent model organism for lipid research. Here, we have used yeast haploid RAdiation Damage (RAD) deletion strains to study life span and lipid storage patterns. RAD genes are mainly involved in DNA repair mechanism and hence, their deletions have resulted in shorter life span. Viable RAD mutants were screened for non-polar lipid content, and some of the mutants showed significantly high amounts of triacylglycerol (TAG) and steryl ester, besides short chronological life span. Among these, RAD50, MRE11 and XRS2 form a complex, MRX that is involved in homologous recombination that showed an increase in the amount of TAG. Microarray data of single MRX deletions revealed that besides DNA damage signature genes, lipid metabolism genes are also differentially expressed. Lipid biosynthetic genes (LPP1, SLC1) were upregulated and lipid hydrolytic gene (TGL3) was downregulated. We observed that rad50Δ, mre11Δ, xrs2Δ and mrxΔ strains have high number of lipid droplets (LDs) with fragmented mitochondria. These mutants have a short chronological life span compared to wild type. Aged wild-type cells also accumulated TAG with LDs of ∼2.0 µm in diameter. These results suggest that TAG accumulation and big size LDs could be possible markers for premature or normal aging.


Asunto(s)
Eliminación de Gen , Saccharomyces cerevisiae/fisiología , Triglicéridos/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Perfilación de la Expresión Génica , Redes y Vías Metabólicas/genética , Análisis por Micromatrices , Saccharomyces cerevisiae/genética
19.
Chem Phys Lipids ; 258: 105353, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37944658

RESUMEN

Lipids are essential biological macromolecules that play a pivotal role in various physiological processes and cellular homeostasis. ABHD16B, a member of the α/ß-hydrolase domain (ABHD) superfamily protein, has emerged as a potential key regulator in lipid metabolism. However, the precise role of human ABHD16B in lipid metabolism remains unclear. In this study, we reported the overexpression of ABHD16B in Saccharomyces cerevisiae to determine its physiological relevance in lipid metabolism. Through in vivo [14C]acetate labeling experiments, we observed that overexpression of ABHD16B causes a decrease in cellular triacylglycerol (TAG) levels and a concurrent increase in phospholipid synthesis in wild-type cells. Mass spectrometry (LC-MS/MS) analysis further corroborated these findings, showing a significant decrease in TAGs with a carbon chain length of 48 and an increase in major phospholipid species, specifically 34:2, upon overexpression of ABHD16B. Confocal microscopy analysis revealed a reduction in the number of lipid droplets in strains overexpressing ABHD16B, consistent with the observed decrease in neutral lipids. Additionally, qRT-PCR analysis indicated a high phospholipid synthetic activity of ABHD16B and a potential decrease in TAG levels in wild-type yeast, possibly due to upregulation of endogenous TAG hydrolytic enzymes, as confirmed using 3tglsΔ mutant strain. Furthermore, GC-MS analysis revealed significant modifications in fatty acid composition upon ABHD16B overexpression. Collectively, our results underscore the influence of ABHD16B overexpression on TAG levels, phospholipid synthesis, lipid droplet dynamics, and fatty acid composition. These findings reveal a complex interplay between TAG hydrolysis and phospholipid synthesis, highlighting the critical involvement of ABHD16B in lipid homeostasis and providing further insights into its regulatory function in cellular lipid metabolism.


Asunto(s)
Lipasa , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , Lipasa/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Metabolismo de los Lípidos/fisiología , Fosfolípidos/metabolismo , Triglicéridos/metabolismo , Ácidos Grasos/metabolismo
20.
J Biol Chem ; 287(3): 1946-54, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22128159

RESUMEN

In plants, fatty oils are generally stored in spherical intracellular organelles referred to as oleosomes that are covered by proteins such as oleosin. Seeds with high oil content have more oleosin than those with low oil content. However, the exact role of oleosin in oil accumulation is thus far unclear. Here, we report the isolation of a catalytically active 14 S multiprotein complex capable of acylating monoacylglycerol from the microsomal membranes of developing peanut cotyledons. Microsomal membranes from immature peanut seeds were solubilized using 8 m urea and 10 mm CHAPS. Using two-dimensional gel electrophoresis and mass spectrometry, we identified 27 proteins in the 14 S complex. The major proteins present in the 14 S complex are conarachin, the major allergen Ara h 1, and other seed storage proteins. We identified oleosin 3 as a part of the 14 S complex, which is capable of acylating monoacylglycerol. The recombinant OLE3 microsomes from Saccharomyces cerevisiae have been shown to have both a monoacylglycerol acyltransferase and a phospholipase A(2) activity. Overexpression of the oleosin 3 (OLE3) gene in S. cerevisiae resulted in an increased accumulation of diacylglycerols and triacylglycerols and decreased phospholipids. These findings provide a direct role for a structural protein (OLE3) in the biosynthesis and mobilization of plant oils.


Asunto(s)
Aciltransferasas/metabolismo , Arachis/enzimología , Microsomas/enzimología , Complejos Multienzimáticos/metabolismo , Fosfolipasas/metabolismo , Proteínas de Plantas/metabolismo , Aciltransferasas/genética , Arachis/genética , Complejos Multienzimáticos/genética , Fosfolipasas/genética , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA