Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 187: 107885, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37467902

RESUMEN

Studies carried out on bark beetles within Dendroctonus have been extensive and revealed diverse information in different areas of their natural history, taxonomy, evolution, and interactions, among others. Despite these efforts, phylogenetic hypotheses have remained obscured mainly due to limited information analyzed (taxonomic, gene sampling, or both) in studies focused on obtaining evolutionary hypotheses for this genus. With the aim of filling these gaps in the evolutionary history for Dendroctonus, we analyzed ∼1800 loci mapped to a reference genome obtained for 20 of the 21 species recognized to date, minimizing the impact of missing information and improving the assumption of orthology in a phylogenomic framework. We obtained congruent phylogenetic topologies from two phylogenomic inference strategies: loci concatenation (ML framework) and a multispecies coalescent model (MSC) through the analysis of site pattern frequencies (SNPs). Dendroctonus is composed of two major clades (A and B), each containing five and four subclades, respectively. According to our divergence dating analysis, the MRCA for Dendroctonus dates back to the early Eocene, while the MRCA for each major clade diverged in the mid-Eocene. Interestingly, most of the speciation events of extant species occurred during the Miocene, which could be correlated with the diversification of pine trees (Pinus). The MRCA for Dendroctonus inhabited large regions of North America, with all ancestors and descendants of clade A having diversified within this region. The Mexican Transition Zone is important in the diversification processes for the majority of clade A species. For clade B, we identified two important colonization events to the Old World from America: the first in the early Oligocene from the Arctic to Asia (via Beringia), and the second during the Miocene from the Arctic-Western-Alleghany region to Europe and Siberia (also via Beringia). Our genomic analyses also supported the existence of hidden structured lineages within the frontalis complex, and also that D. beckeri represent a lineage independent from D. valens, as previously suggested. The information presented here updates the knowledge concerning the diversification of a genus with remarkable ecological and economic importance.


Asunto(s)
Corteza de la Planta , Gorgojos , Animales , Filogenia , América del Norte , México
2.
Mol Phylogenet Evol ; 150: 106880, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32512192

RESUMEN

We utilize the efficient GBS technique to obtain thousands of nuclear loci and SNPs to reconstruct the evolutionary history of Mexican leaf-toed geckos (Phyllodactylus). Through the incorporation of unprecedented sampling for this group of geckos, in combination with genomic data analysis, we generate mostly consistent phylogenetic hypotheses using two approaches: supermatrix and coalescent-based inference. All topologies depict three, mutually exclusive major clades. Clade I comprises P. bordai and all species closer to P. bordai than to any other Phyllodactylus. Clade II comprises P. nocticolus and all species closer to P. nocticolus than to any other Phyllodactylus. Clade III comprises P. tuberculosus and all species closer to P. tuberculosus than to any other Phyllodactylus. Analyses estimate the age for the most recent common ancestor of Phyllodactylus in the Eocene (~43 mya), and the ancestors of each major clade date to the Eocene-Oligocene transition (32-36 mya). This group includes one late-Eocene lineage (P. bordai), Oligocene lineages (P. paucituberculatus, P. delcampi), but also topological patterns that indicate a recent radiation occurred during the Pleistocene on islands in the Gulf of California. The wide spatial and temporal scale indicates a complex and unique biogeographic history for each major clade. The 33 species delimited by BPP and stepping-stone BFD*coalescent based genomic approaches reflect this history. This diversity delimited for Mexican leaf-toed geckos demonstrates a vast underestimation in the number of species based on morphological data alone.


Asunto(s)
Variación Genética , Lagartos/clasificación , Animales , Teorema de Bayes , Evolución Biológica , Lagartos/genética , México , Filogenia
3.
Mol Phylogenet Evol ; 115: 82-94, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28739370

RESUMEN

The description of cryptic gecko species worldwide has revealed both that many putative species are, in fact, conformed by a complex of morphologically conserved species that are genetically distinct and highly divergent, and that gecko species diversity could be underestimated. The taxonomy and species delimitation of geckos belonging to the genus Phyllodactylus is still controversial, 16 of which are distributed in Mexico and 13 are endemic. Although the large morphological variation shown by the Phyllodactylus species from Mexico has been amply documented, little is known about their genetic diversity and evolutionary relationships, and much less regarding cryptic speciation. Here, we included the most comprehensive sampling of populations and species of the Phyllodactylus lanei complex distributed in Mexico, and applied an analytical approach that included probabilistic phylogenetic analyses, jointly with species delimitation methods and Bayesian putative species validation analysis. Our results suggest the existence of 10 lineages within the complex, supporting the existence of cryptic species, and in great contrast with the current taxonomic proposal that includes only four subspecies. The most recent common ancestor (MRCA) for the P. lanei clade originated on the Early Eocene (∼54Mya), along the southern coasts of Mexico, followed by the highest diversification of the complex MRCA during the Eocene (34-56Mya). Lineages subsequently dispersed and diversified towards the northwest, and the diversification process ended with the most recent lineages inhabiting two islands on the coasts of Nayarit (Miocene; 5.5-23Mya). Our results highlight three vicariant events associated with the evolution of the lineages, two of them intimately related to the formation of the Sierra Madre del Sur and the Transmexican Volcanic Belt mountain ranges, main geographic barriers that isolated and facilitated the divergence and speciation in this group of geckos. Finally, we propose that there are 10 species in the P. lanei complex, from which four represent taxonomic changes and six are new species and require a formal description. We acknowledge that more analyses, including a detailed evaluation of morphological characters and use of more unlinked nuclear loci with enough variability, are needed to further support their taxonomic description.


Asunto(s)
Variación Genética , Lagartos/clasificación , Animales , Teorema de Bayes , Factor Neurotrófico Derivado del Encéfalo/clasificación , Factor Neurotrófico Derivado del Encéfalo/genética , Citocromos b/clasificación , Citocromos b/genética , Lagartos/genética , Filogenia , Proteínas Proto-Oncogénicas c-mos/clasificación , Proteínas Proto-Oncogénicas c-mos/genética , ARN Ribosómico 16S/clasificación , ARN Ribosómico 16S/genética , Especificidad de la Especie
4.
Zookeys ; 1024: 117-136, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33776523

RESUMEN

We describe a new species of leaf-toed gecko of the genus Phyllodactylus from María Cleofas Island, the smallest island of Tres Marías Archipelago, Nayarit, México. Genomic, phylogenomic, and morphological evidence support that the new species presents a unique combination of diagnostic characters. Morphologically, the new species has a high number of tubercles, head to tail (mean 47), longitudinal ventral scales (mean 61), and third labial-snout scales (mean 26). Gene flow tests revealed the genetic isolation of insular populations from mainland counterparts. In addition, we confirmed the non-monophyly of P. homolepidurus and P. nolascoensis, and we show that the taxon P. t. saxatilis is a complex; therefore, we propose taxonomic changes within the saxatilis clade. The discovery of this new insular endemic species highlights the urgency of continued exploration of the biological diversity of island faunas of Mexico.

5.
Zootaxa ; 4407(2): 151-190, 2018 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-29690191

RESUMEN

An integrative taxonomy approach was implemented based on analysis of genetic, phylogenetic, morphological and ecological data to identify the cryptic diversity within the Phyllodactylus lanei complex. At least six species can be identified, of which four are currently considered subspecies: Phyllodactylus lanei, Phyllodactylus rupinus, Phyllodactylus isabelae, Phyllodactylus lupitae and two corresponding to undescribed taxa, which are identified and described in this contribution. These differ from other Mexican geckos in several characters: genetic distance (DNAmt), position in molecular phylogeny (concatened data DNAmt+DNAnu), species tree, morphological characters such as snout-vent length, longitudinal scales, tubercles from head to tail, interorbital scales, scales across venter, third labial-snout scales and rows of tubercles across dorsum; there are also differences in their bioclimatic profiles (temperature and precipitation) and geographical distribution. The most recent studies on taxonomy and evolution of Mexican geckos (Phyllodactylus) show that the diversity of this group of reptiles is currently underestimated, suggesting that more research and conservation efforts are should be addressed at these lizards.


Asunto(s)
Lagartos , Animales , México , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA