Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36614200

RESUMEN

Breast cancer (BC) is primarily triggered by estrogens, especially 17ß-estradiol (E2), which are synthesized by the aromatase enzyme. While all steroid hormones are derived from cholesterol, the rate-limiting step in steroid biosynthesis is mediated by the steroidogenic acute regulatory (StAR) protein. Herein, we demonstrate that StAR mRNA expression was aberrantly high in human hormone-dependent BC (MCF7, MDA-MB-361, and T-47D), modest in hormone-independent triple negative BC (TNBC; MDA-MB-468, BT-549, and MDA-MB-231), and had little to none in non-cancerous mammary epithelial (HMEC, MCF10A, and MCF12F) cells. In contrast, these cell lines showed abundant expression of aromatase (CYP19A1) mRNA. Immunofluorescence displayed qualitatively similar patterns of both StAR and aromatase expression in various breast cells. Additionally, three different transgenic (Tg) mouse models of spontaneous breast tumors, i.e., MMTV-Neu, MMTV-HRAS, and MMTV-PyMT, demonstrated markedly higher expression of StAR mRNA/protein in breast tumors than in normal mammary tissue. While breast tumors in these mouse models exhibited higher expression of ERα, ERß, and PR mRNAs, their levels were undetected in TNBC tumors. Accumulation of E2 in plasma and breast tissues, from MMTV-PyMT and non-cancerous Tg mice, correlated with StAR, but not with aromatase, signifying the importance of StAR in governing E2 biosynthesis in mammary tissue. Treatment with a variety of histone deacetylase inhibitors (HDACIs) in primary cultures of enriched breast tumor epithelial cells, from MMTV-PyMT mice, resulted in suppression of StAR and E2 levels. Importantly, inhibition of StAR, concomitant with E2 synthesis, by various HDACIs, at clinical and preclinical doses, in MCF7 cells, indicated therapeutic relevance of StAR in hormone-dependent BCs. These findings provide insights into the molecular events underlying the differential expression of StAR in human and mouse cancerous and non-cancerous breast cells/tissues, highlighting StAR could serve not only as a novel diagnostic maker but also as a therapeutic target for the most prevalent hormone-sensitive BCs.


Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Femenino , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Aromatasa/genética , Aromatasa/metabolismo , Estradiol , Neoplasias Mamarias Animales/patología , Ratones Transgénicos , ARN Mensajero/genética
2.
Biochem J ; 478(7): 1347-1358, 2021 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-33720280

RESUMEN

α-Methyl-L-tryptophan (α-MLT) is currently in use as a tracer in its 11C-labeled form to monitor the health of serotonergic neurons in humans. In the present study, we found this compound to function as an effective weight-loss agent at pharmacological doses in multiple models of obesity in mice. The drug was able to reduce the body weight when given orally in drinking water (1 mg/ml) in three different models of obesity: normal mice on high-fat diet, Slc6a14-null mice on high-fat diet, and ob/ob mice on normal diet. Only the l-enantiomer (α-MLT) was active while the d-enantiomer (α-MDT) had negligible activity. The weight-loss effect was freely reversible, with the weight gain resuming soon after the withdrawal of the drug. All three models of obesity were associated with hyperglycemia, insulin resistance, and hepatic steatosis; α-MLT reversed these features. There was a decrease in food intake in the treatment group. Mice on a high-fat diet showed decreased cholesterol and protein in the serum when treated with α-MLT; there was however no evidence of liver and kidney dysfunction. Plasma amino acid profile indicated a significant decrease in the levels of specific amino acids, including tryptophan; but the levels of arginine were increased. We conclude that α-MLT is an effective, reversible, and orally active drug for the treatment of obesity and metabolic syndrome.


Asunto(s)
Sistemas de Transporte de Aminoácidos/fisiología , Fármacos Antiobesidad/farmacología , Modelos Animales de Enfermedad , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Obesidad/tratamiento farmacológico , Triptófano/análogos & derivados , Animales , Dieta Alta en Grasa , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/etiología , Obesidad/etiología , Obesidad/patología , Triptófano/farmacología
3.
Biochem J ; 478(21): 3957-3976, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34704597

RESUMEN

Metabolic reprogramming in cancer necessitates increased amino acid uptake, which is accomplished by up-regulation of specific amino acid transporters. However, not all tumors rely on any single amino acid transporter for this purpose. Here, we report on the differential up-regulation of the amino acid transporter SLC38A5 in triple-negative breast cancer (TNBC). The up-regulation is evident in TNBC tumors, conventional and patient-derived xenograft TNBC cell lines, and a mouse model of spontaneous TNBC mammary tumor. The up-regulation is confirmed by functional assays. SLC38A5 is an amino acid-dependent Na+/H+ exchanger which transports Na+ and amino acids into cells coupled with H+ efflux. Since cell-surface Na+/H+ exchanger is an established inducer of macropinocytosis, an endocytic process for cellular uptake of bulk fluid and its components, we examined the impact of SLC38A5 on macropinocytosis in TNBC cells. We found that the transport function of SLC38A5 is coupled to the induction of macropinocytosis. Surprisingly, the transport function of SLC38A5 is inhibited by amilorides, the well-known inhibitors of Na+/H+ exchanger. Down-regulation of SLC38A5 in TNBC cells attenuates serine-induced macropinocytosis and reduces cell proliferation significantly as assessed by multiple methods, but does not induce cell death. The Cancer Genome Atlas database corroborates SLC38A5 up-regulation in TNBC. This represents the first report on the selective expression of SLC38A5 in TNBC and its role as an inducer of macropinocytosis, thus revealing a novel, hitherto unsuspected, function for an amino acid transporter that goes beyond amino acid delivery but is still relevant to cancer cell nutrition and proliferation.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/fisiología , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Transporte Biológico , Línea Celular Tumoral , Endocitosis , Femenino , Humanos , Ratones , Ratones Transgénicos
4.
Biochem J ; 473(9): 1113-24, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-27118869

RESUMEN

The role of plasma membrane transporters in cancer is receiving increasing attention in recent years. Several transporters for essential nutrients are up-regulated in cancer and serve as tumour promoters. Transporters could also function as tumour suppressors. To date, four transporters belonging to the SLC gene family have been identified as tumour suppressors. SLC5A8 is a Na(+)-coupled transporter for monocarboxylates. Among its substrates are the bacterial fermentation products butyrate and propionate and the ubiquitous metabolite pyruvate. The tumour-suppressive function of this transporter relates to the ability of butyrate, propionate and pyruvate to inhibit histone deacetylases (HDAC). SLC5A8 functions as a tumour suppressor in most tissues studied thus far, and provides a molecular link to Warburg effect, a characteristic feature in most cancers. It also links colonic bacteria and dietary fibre to the host. SLC26A3 as a tumour suppressor is restricted to colon; it is a Cl(-)/HCO(-) 3 exchanger, facilitating the efflux of HCO(-) 3 The likely mechanism for the tumour-suppressive function of SLC26A3 is related to intracellular pH regulation. SLC39A1 is a Zn(2+) transporter and its role in tumour suppression has been shown in prostate. Zn(2+) is present at high concentrations in normal prostate where it elicits its tumour-suppressive function. SLC22A18 is possibly an organic cation transporter, but the identity of its physiological substrates is unknown. As such, there is no information on molecular pathways responsible for the tumour-suppressive function of this transporter. It is likely that additional SLC transporters will be discovered as tumour suppressors in the future.


Asunto(s)
Antiportadores de Cloruro-Bicarbonato/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neoplasias/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Antiportadores de Cloruro-Bicarbonato/genética , Humanos , Transporte Iónico/genética , Transportadores de Ácidos Monocarboxílicos/genética , Neoplasias/genética , Transportadores de Sulfato , Proteínas Supresoras de Tumor/genética
5.
Biochem J ; 469(1): 17-23, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26173258

RESUMEN

SLC6A14 mediates Na(+)/Cl(-)-coupled concentrative uptake of a broad-spectrum of amino acids. It is expressed at low levels in many tissues but up-regulated in certain cancers. Pharmacological blockade of SLC6A14 causes amino acid starvation in estrogen receptor positive (ER+) breast cancer cells and suppresses their proliferation in vitro and in vivo. In the present study, we interrogated the role of this transporter in breast cancer by deleting Slc6a14 in mice and monitoring the consequences of this deletion in models of spontaneous breast cancer (Polyoma middle T oncogene-transgenic mouse and mouse mammary tumour virus promoter-Neu-transgenic mouse). Slc6a14-knockout mice are viable, fertile and phenotypically normal. The plasma amino acids were similar in wild-type and knockout mice and there were no major compensatory changes in the expression of other amino acid transporter mRNAs. There was also no change in mammary gland development in the knockout mouse. However, when crossed with PyMT-Tg mice or MMTV/Neu (mouse mammary tumour virus promoter-Neu)-Tg mice, the development and progression of breast cancer were markedly decreased on Slc6a14(-/-) background. Analysis of transcriptomes in tumour tissues from wild-type mice and Slc6a14-null mice indicated no compensatory changes in the expression of any other amino acid transporter mRNA. However, the tumours from the null mice showed evidence of amino acid starvation, decreased mTOR signalling and decreased cell proliferation. These studies demonstrate that SLC6A14 is critical for the maintenance of amino acid nutrition and optimal mammalian target of rapamycin (mTOR) signalling in ER+ breast cancer and that the transporter is a potential target for development of a novel class of anti-cancer drugs targeting amino acid nutrition in tumour cells.


Asunto(s)
Sistemas de Transporte de Aminoácidos , Proliferación Celular , Eliminación de Gen , Neoplasias Mamarias Experimentales/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Transporte de Neurotransmisores en la Membrana Plasmática , Transducción de Señal , Animales , Sistemas de Liberación de Medicamentos , Femenino , Neoplasias Mamarias Experimentales/dietoterapia , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Noqueados , Proteínas de Neoplasias/genética , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
6.
J Pharmacol Exp Ther ; 353(1): 17-26, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25617245

RESUMEN

NaCT (SLC13A5) is a Na(+)-coupled transporter for Krebs cycle intermediates and is expressed predominantly in the liver. Human NaCT is relatively specific for citrate compared with other Krebs cycle intermediates. The transport activity of human NaCT is stimulated by Li(+), whereas that of rat NaCT is inhibited by Li(+). We studied the influence of Li(+) on NaCTs cloned from eight different species. Li(+) stimulated the activity of only NaCTs from primates (human, chimpanzee, and monkey); by contrast, NaCTs from nonprimate species (mouse, rat, dog, and zebrafish) were inhibited by Li(+). Caenorhabditis elegans NaCT was not affected by Li(+). With human NaCT, the Li(+)-induced increase in transport activity was associated with the conversion of the transporter from a low-affinity/high-capacity type to a high-affinity/low-capacity type. H(+) was able to substitute for Li(+) in eliciting the stimulatory effect. The amino acid Phe500 in human NaCT was critical for Li(+)/H(+)-induced stimulation. Mutation of this amino acid to tryptophan (F500W) markedly increased the basal transport activity of human NaCT in the absence of Li(+), but the ability of Li(+) to stimulate the transporter was almost completely lost with this mutant. Substitution of Phe500 with tryptophan in human NaCT converted the transporter from a low-affinity/high-capacity type to a high-affinity/low-capacity type, an effect similar to that of Li(+) on the wild-type NaCT. These studies show that Li(+)-induced activation of NaCT is specific for the transporter in primates and that the region surrounding Phe500 in primate NaCTs is important for the Li(+) effect.


Asunto(s)
Compuestos de Litio/farmacología , Simportadores/metabolismo , Animales , Transporte Biológico , Caenorhabditis elegans , Línea Celular , Citratos/metabolismo , Perros , Femenino , Humanos , Macaca mulatta , Ratones , Mutación , Oocitos/metabolismo , Pan troglodytes , Ratas , Especificidad de la Especie , Simportadores/genética , Xenopus laevis , Pez Cebra
7.
Mol Biol Rep ; 40(5): 3623-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23269624

RESUMEN

Osteopontin (OPN) involves in the tumor-promoting or metastasis in human endometrial cancer. Depletion of OPN gene expression in endometrial cancer cells was significantly decreased in cell viability and the cells undergo apoptotic cell death. The status of OPN in THESC, RL95, Hec1A and Ishikawa cell lines were analyzed by RT-PCR and western blot. After OPN-siRNA transfection, mRNA and protein expression levels of OPN were determined in Hec1A and Ishikawa cells. Cell proliferation and cell cycle distribution were observed by MTT and flow cytometry analysis. DNA fragmentation assay was used to measure cell apoptosis. Cell migration was assessed by wound healing assay. Depletion of OPN gene expression in endometrial cancer cell lines (Hec1A and Ishikawa cells) reproducibly changed their ability of proliferation. Concomitant changes were seen in the expression of OPN binding cell surface receptors, cell cycle-regulatory genes, cell invasion and colony formation nature of the tumor cells. Decreased colonizing potential in the absence of OPN was reversed in the presence of recombinant OPN. Inhibition of anchorage-independent growth was observed in the presence of metabolic inhibitors of the PI3K, Src and integrin signaling cascades, which was ameliorated in the presence of exogenously added OPN. Our result showed the role of OPN in endometrial cancer, in particular on the malignancy-promoting aspects of OPN that may pave way for new approaches to the clinical management of endometrial cancer.


Asunto(s)
Transformación Celular Neoplásica/genética , Neoplasias Endometriales/genética , Osteopontina/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Neoplasias Endometriales/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis de la Neoplasia/genética , Osteopontina/metabolismo
8.
Cancers (Basel) ; 15(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36765717

RESUMEN

Niclosamide, a drug used to treat tapeworm infection, possesses anticancer effects by interfering with multiple signaling pathways. Niclosamide also causes intracellular acidification. We have recently discovered that the amino acid transporter SLC38A5, an amino acid-dependent Na+/H+ exchanger, activates macropinocytosis in cancer cells via amino acid-induced intracellular alkalinization. Therefore, we asked whether niclosamide will block basal and SLC38A5-mediated macropinocytosis via intracellular acidification. We monitored macropinocytosis in pancreatic and breast cancer cells using TMR-dextran and the function of SLC38A5 by measuring Li+-stimulated serine uptake. The peptide transporter activity was measured by the uptake of glycylsarcosine. Treatment of the cancer cells with niclosamide caused intracellular acidification. The drug blocked basal and serine-induced macropinocytosis with differential potency, with an EC50 of ~5 µM for the former and ~0.4 µM for the latter. The increased potency for amino acid-mediated macropinocytosis is due to direct inhibition of SLC38A5 by niclosamide in addition to the ability of the drug to cause intracellular acidification. The drug also inhibited the activity of the H+-coupled peptide transporter. We conclude that niclosamide induces nutrient starvation in cancer cells by blocking macropinocytosis, SLC38A5 and the peptide transporter. These studies uncover novel, hitherto unknown, mechanisms for the anticancer efficacy of this antihelminthic.

9.
J Biol Chem ; 286(36): 31830-8, 2011 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-21771784

RESUMEN

SLC6A14, also known as ATB(0,+), is an amino acid transporter with unique characteristics. It transports 18 of the 20 proteinogenic amino acids. However, this transporter is expressed only at low levels in normal tissues. Here, we show that the transporter is up-regulated specifically in estrogen receptor (ER)-positive breast cancer, demonstrable with primary human breast cancer tissues and human breast cancer cell lines. SLC6A14 is an estrogen/ER target. The transport features of SLC6A14 include concentrative transport of leucine (an activator of mTOR), glutamine (an essential amino acid for nucleotide biosynthesis and substrate for glutaminolysis), and arginine (an essential amino acid for tumor cells), suggesting that ER-positive breast cancer cells up-regulate SLC6A14 to meet their increased demand for these amino acids. Consequently, treatment of ER-positive breast cancer cells in vitro with α-methyl-DL-tryptophan (α-MT), a selective blocker of SLC6A14, induces amino acid deprivation, inhibits mTOR, and activates autophagy. Prolongation of the treatment with α-MT causes apoptosis. Addition of an autophagy inhibitor (3-methyladenine) during α-MT treatment also induces apoptosis. These effects of α-MT are specific to ER-positive breast cancer cells, which express the transporter. The ability of α-MT to cause amino acid deprivation is significantly attenuated in MCF-7 cells, an ER-positive breast cancer cell line, when SLC6A14 is silenced with shRNA. In mouse xenograft studies, α-MT by itself is able to reduce the growth of the ER-positive ZR-75-1 breast cancer cells. These studies identify SLC6A14 as a novel and effective drug target for the treatment of ER-positive breast cancer.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inhibidores , Neoplasias de la Mama/tratamiento farmacológico , Sistemas de Transporte de Aminoácidos , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Autofagia/efectos de los fármacos , Neoplasias de la Mama/patología , Femenino , Humanos , Ratones , Terapia Molecular Dirigida/métodos , Receptores de Estrógenos , Trasplante Heterólogo , Triptófano/análogos & derivados , Triptófano/farmacología , Células Tumorales Cultivadas
10.
Biomolecules ; 12(2)2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35204736

RESUMEN

Amino acid transporters are expressed in mammalian cells not only in the plasma membrane but also in intracellular membranes. The conventional function of these transporters is to transfer their amino acid substrates across the lipid bilayer; the direction of the transfer is dictated by the combined gradients for the amino acid substrates and the co-transported ions (Na+, H+, K+ or Cl-) across the membrane. In cases of electrogenic transporters, the membrane potential also contributes to the direction of the amino acid transfer. In addition to this expected traditional function, several unconventional functions are known for some of these amino acid transporters. This includes their role in intracellular signaling, regulation of acid-base balance, and entry of viruses into cells. Such functions expand the biological roles of these transporters beyond the logical amino acid homeostasis. In recent years, two additional unconventional biochemical/metabolic processes regulated by certain amino acid transporters have come to be recognized: macropinocytosis and obesity. This adds to the repertoire of biological processes that are controlled and regulated by amino acid transporters in health and disease. In the present review, we highlight the unusual involvement of selective amino acid transporters in macropinocytosis (SLC38A5/SLC38A3) and diet-induced obesity/metabolic syndrome (SLC6A19/SLC6A14/SLC6A6).


Asunto(s)
Síndrome Metabólico , Sistemas de Transporte de Aminoácidos/metabolismo , Animales , Transporte Biológico , Dieta , Mamíferos/metabolismo , Obesidad/metabolismo
11.
Cancers (Basel) ; 13(19)2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34638504

RESUMEN

Deciphering the mechanisms that drive transdifferentiation to neuroendocrine prostate cancer (NEPC) is crucial to identifying novel therapeutic strategies against this lethal and aggressive subtype of advanced prostate cancer (PCa). Further, the role played by exosomal microRNAs (miRs) in mediating signaling mechanisms that propagate the NEPC phenotype remains largely elusive. The unbiased differential miR expression profiling of human PCa cells genetically modulated for TBX2 expression led to the identification of miR-200c-3p. Our findings have unraveled the TBX2/miR-200c-3p/SOX2/N-MYC signaling axis in NEPC transdifferentiation. Mechanistically, we found that: (1) TBX2 binds to the promoter and represses the expression of miR-200c-3p, a miR reported to be lost in castrate resistant prostate cancer (CRPC), and (2) the repression of miR-200c-3p results in the increased expression of its targets SOX2 and N-MYC. In addition, the rescue of mir-200c-3p in the context of TBX2 blockade revealed that miR-200c-3p is the critical intermediary effector in TBX2 regulation of SOX2 and N-MYC. Further, our studies show that in addition to the intracellular mode, TBX2/miR-200c-3p/SOX2/N-MYC signaling can promote NEPC transdifferentiation via exosome-mediated intercellular mechanism, an increasingly recognized and key mode of propagation of the NEPC phenotype.

12.
Oncotarget ; 12(22): 2234-2251, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34733415

RESUMEN

DVL proteins are central mediators of the Wnt pathway and relay complex input signals into different branches of the Wnt signaling network. However, molecular mechanism(s) that regulate DVL-mediated relay of Wnt signals still remains unclear. Here, for the first time, we elucidate the functional significance of three DVL-1 lysines (K/Lys) which are subject to post-translational acetylation. We demonstrate that K34 Lys residue in the DIX domain regulates subcellular localization of ß-catenin, thereby influencing downstream Wnt target gene expression. Additionally, we show that K69 (DIX domain) and K285 (PDZ domain) regulate binding of DVL-1 to Wnt target gene promoters and modulate expression of Wnt target genes including CMYC, OCT4, NANOG, and CCND1, in cell line models and xenograft tumors. Finally, we report that conserved DVL-1 lysines modulate various oncogenic functions such as cell migration, proliferation, cell-cycle progression, 3D-spheroid formation and in-vivo tumor growth in breast cancer models. Collectively, these findings highlight the importance of DVL-1 domain-specific lysines which were recently shown to be acetylated and characterize their influence on Wnt signaling. These site-specific modifications may be subject to regulation by therapeutics already in clinical use (lysine deacetylase inhibitors such as Panobinostat and Vorinostat) or may possibly have prognostic utility in translational efforts that seek to modulate dysfunctional Wnt signaling.

13.
Mol Cancer Res ; 19(9): 1486-1497, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34099522

RESUMEN

DNA damage, induced by either chemical carcinogens or environmental pollutants, plays an important role in the initiation of colorectal cancer. DNA repair processes, however, are involved in both protecting against cancer formation, and also contributing to cancer development, by ensuring genomic integrity and promoting the efficient DNA repair in tumor cells, respectively. Although DNA repair pathways have been well exploited in the treatment of breast and ovarian cancers, the role of DNA repair processes and their therapeutic efficacy in colorectal cancer is yet to be appreciably explored. To understand the role of DNA repair, especially homologous recombination (HR), in chemical carcinogen-induced colorectal cancer growth, we unraveled the role of RAD51AP1 (RAD51-associated protein 1), a protein involved in HR, in genotoxic carcinogen (azoxymethane, AOM)-induced colorectal cancer. Although AOM treatment alone significantly increased RAD51AP1 expression, the combination of AOM and dextran sulfate sodium (DSS) treatment dramatically increased by several folds. RAD51AP1 expression is found in mouse colonic crypt and proliferating cells. RAD51AP1 expression is significantly increased in majority of human colorectal cancer tissues, including BRAF/KRAS mutant colorectal cancer, and associated with reduced treatment response and poor prognosis. Rad51ap1-deficient mice were protected against AOM/DSS-induced colorectal cancer. These observations were recapitulated in a genetically engineered mouse model of colorectal cancer (ApcMin /+ ). Furthermore, chemotherapy-resistant colorectal cancer is associated with increased RAD51AP1 expression. This phenomenon is associated with reduced cell proliferation and colorectal cancer stem cell (CRCSC) self-renewal. Overall, our studies provide evidence that RAD51AP1 could be a novel diagnostic marker for colorectal cancer and a potential therapeutic target for colorectal cancer prevention and treatment. IMPLICATIONS: This study provides first in vivo evidence that RAD51AP1 plays a critical role in colorectal cancer growth and drug resistance by regulating CRCSC self-renewal.


Asunto(s)
Autorrenovación de las Células , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Resistencia a Antineoplásicos , Fluorouracilo/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Animales , Antimetabolitos Antineoplásicos/farmacología , Apoptosis , Estudios de Casos y Controles , Proliferación Celular , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Proteínas de Unión al ADN/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Pronóstico , Proteínas de Unión al ARN/genética , Tasa de Supervivencia , Células Tumorales Cultivadas
14.
Sci Rep ; 10(1): 8536, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32444674

RESUMEN

Metformin is the first-line treatment for type 2 diabetes. Inhibition of hepatic gluconeogenesis is the primary contributor to its anti-diabetic effect. Metformin inhibits complex I and α-glycerophosphate shuttle, and the resultant increase in cytoplasmic NADH/NAD+ ratio diverts glucose precursors away from gluconeogenesis. These actions depend on metformin-mediated activation of AMP kinase (AMPK). Here we report on a hitherto unknown mechanism. Metformin inhibits the expression of the plasma membrane citrate transporter NaCT in HepG2 cells and decreases cellular levels of citrate. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activator, elicits a similar effect. The process involves a decrease in maximal velocity with no change in substrate affinity. The decrease in NaCT expression is associated with decreased mRNA levels. AMPK inhibits mTOR, and the mTOR inhibitor rapamycin also decreases NaCT expression. The transcription factor downstream of AMPK that is relevant to cAMP signaling is CREB; decreased levels of phospho-CREB seem to mediate the observed effects of metformin on NaCT. Citrate is known to suppress glycolysis by inhibiting phosphofructokinase-1 and activate gluconeogenesis by stimulating fructose-1,6-bisphophatase; therefore, the decrease in cellular levels of citrate would stimulate glycolysis and inhibit gluconeogenesis. These studies uncover a novel mechanism for the anti-diabetic actions of metformin.


Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Carcinoma Hepatocelular/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Metformina/farmacología , Terapia Molecular Dirigida , Ribonucleótidos/farmacología , Simportadores/antagonistas & inhibidores , Aminoimidazol Carboxamida/farmacología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Ácido Cítrico/metabolismo , Glucólisis , Células Hep G2 , Humanos , Hipoglucemiantes/farmacología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Transducción de Señal , Simportadores/genética , Simportadores/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
15.
Oncogene ; 39(16): 3292-3304, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32071396

RESUMEN

GPR81 is a G-protein-coupled receptor for lactate, which is upregulated in breast cancer and plays an autocrine role to promote tumor growth by tumor cell-derived lactate. Here we asked whether lactate has any paracrine role via activation of GPR81 in cells present in tumor microenvironment to help tumor growth. First, we showed that deletion of Gpr81 suppresses breast cancer growth in a constitutive breast cancer mouse model (MMTV-PyMT-Tg). We then used a syngeneic transplant model by monitoring tumor growth from a mouse breast cancer cell line (AT-3, Gpr81-negative) implanted in mammary fat pad of wild-type mice and Gpr81-null mice. Tumor growth was suppressed in Gpr81-null mice compared with wild-type mice. There were more tumor-infiltrating T cells and MHCIIhi-immune cells in tumors from Gpr81-null mice compared with tumors from wild-type mice. RNA-seq analysis of tumors indicated involvement of immune cells and antigen presentation in Gpr81-dependent tumor growth. Antigen-presenting dendritic cells expressed Gpr81 and activation of this receptor by lactate suppressed cell-surface presentation of MHCII. Activation of Gpr81 in dendritic cells was associated with decreased cAMP, IL-6 and IL-12. These findings suggest that tumor cell-derived lactate activates GPR81 in dendritic cells and prevents presentation of tumor-specific antigens to other immune cells. This paracrine mechanism is complementary to the recently discovered autocrine mechanism in which lactate induces PD-L1 in tumor cells via activation of GPR81 in tumor cells, thus providing an effective means for tumor cells to evade immune system. As such, blockade of GPR81 signaling could boost cancer immunotherapy.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Neoplasias de la Mama/genética , Linfocitos Infiltrantes de Tumor/inmunología , Receptores Acoplados a Proteínas G/genética , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Proliferación Celular/genética , AMP Cíclico/genética , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Interleucina-12/genética , Interleucina-6/genética , Ácido Láctico/metabolismo , Comunicación Paracrina/genética , Comunicación Paracrina/inmunología , Microambiente Tumoral/inmunología
16.
Cancer Res ; 80(18): 3855-3866, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32665355

RESUMEN

RAD51-associated protein 1 (RAD51AP1) plays an integral role in homologous recombination by activating RAD51 recombinase. Homologous recombination is essential for preserving genome integrity and RAD51AP1 is critical for D-loop formation, a key step in homologous recombination. Although RAD51AP1 is involved in maintaining genomic stability, recent studies have shown that RAD51AP1 expression is significantly upregulated in human cancers. However, the functional role of RAD51AP1 in tumor growth and the underlying molecular mechanism(s) by which RAD51AP1 regulates tumorigenesis have not been fully understood. Here, we use Rad51ap1-knockout mice in genetically engineered mouse models of breast cancer to unravel the role of RAD51AP1 in tumor growth and metastasis. RAD51AP1 gene transcript was increased in both luminal estrogen receptor-positive breast cancer and basal triple-negative breast cancer, which is associated with poor prognosis. Conversely, knockdown of RAD51AP1 (RADP51AP1 KD) in breast cancer cell lines reduced tumor growth. Rad51ap1-deficient mice were protected from oncogene-driven spontaneous mouse mammary tumor growth and associated lung metastasis. In vivo, limiting dilution studies provided evidence that Rad51ap1 plays a critical role in breast cancer stem cell (BCSC) self-renewal. RAD51AP1 KD improved chemotherapy and radiotherapy response by inhibiting BCSC self-renewal and associated pluripotency. Overall, our study provides genetic and biochemical evidences that RAD51AP1 is critical for tumor growth and metastasis by increasing BCSC self-renewal and may serve as a novel target for chemotherapy- and radiotherapy-resistant breast cancer. SIGNIFICANCE: This study provides in vivo evidence that RAD51AP1 plays a critical role in breast cancer growth and metastasis by regulating breast cancer stem cell self-renewal.


Asunto(s)
Neoplasias de la Mama/patología , Autorrenovación de las Células/genética , Proteínas de Unión al ADN/deficiencia , Neoplasias Mamarias Animales/patología , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Activación Enzimática , Femenino , Humanos , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/terapia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Neoplásicas , Proteínas de Unión al ARN/genética , Recombinasa Rad51/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Regulación hacia Arriba
17.
Asian J Pharm Sci ; 15(2): 237-251, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32373202

RESUMEN

Based on the evidence that hemochromatosis, an iron-overload disease, drives hepatocellular carcinoma, we hypothesized that chronic exposure to excess iron, either due to genetic or environmental causes, predisposes an individual to cancer. Using pancreatic cancer as our primary focus, we employed cell culture studies to interrogate the connection between excess iron and cancer, and combined in vitro and in vivo studies to explore the connection further. Ferric ammonium citrate was used as an exogenous iron source. Chronic exposure to excess iron induced epithelial-mesenchymal transition (EMT) in normal and cancer cell lines, loss of p53, and suppression of p53 transcriptional activity evidenced from decreased expression of p53 target genes (p21, cyclin D1, Bax, SLC7A11). To further extrapolate our cell culture data, we generated EL-KrasG12D (EL-Kras) mouse (pancreatic neoplastic mouse model) expressing Hfe+/+ and Hfe-/- genetic background. p53 target gene expression decreased in EL-Kras/Hfe-/- mouse pancreas compared to EL-Kras/Hfe+/+ mouse pancreas. Interestingly, the incidence of acinar-to-ductal metaplasia and cystic pancreatic neoplasms (CPN) decreased in EL-Kras/Hfe-/- mice, but the CPNs that did develop were larger in these mice than in EL-Kras/Hfe+/+ mice. In conclusion, these in vitro and in vivo studies support a potential role for chronic exposure to excess iron as a promoter of more aggressive disease via p53 loss and SLC7A11 upregulation within pancreatic epithelial cells.

18.
Can J Gastroenterol Hepatol ; 2019: 2543082, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31976310

RESUMEN

Inflammatory bowel disease (IBD) is characterized by chronic inflammation in the intestinal tract due to disruption of the symbiotic relationship between the host immune system and microbiota. Various factors alter the gut microbiota which lead to dysbiosis; in particular, diet and dietary fibers constitute important determinants. Dietary fiber protects against IBD; bacteria ferment these dietary fibers in colon and generate short-chain fatty acids (SCFAs), which mediate the anti-inflammatory actions of dietary fibers. SLC5A8 is a high-affinity transporter in the apical membrane of colonic epithelium which mediates the entry of SCFAs from the lumen into cells in Na+-coupled manner. Due to the unique transport kinetics, the function of the transporter becomes important only under conditions of low dietary fiber intake. Here, we have examined the impact of dietary fiber deficiency on luminal microbial composition and transcriptomic profile in colonic epithelium in wild-type (WT) and Slc5a8-null (KO) mice. We fed WT and KO mice with fiber-containing diet (FC-diet) or fiber-free diet (FF-diet) and analyzed the luminal bacterial composition by sequencing 16S rRNA gene in feces. Interestingly, results showed significant differences in the microbial community depending on dietary fiber content and on the presence or absence of Slc5a8. There were also marked differences in the transcriptomic profile of the colonic epithelium depending on the dietary fiber content and on the presence or absence of Slc5a8. We conclude that absence of fiber in diet in KO mice causes bacterial dysbiosis and alters gene expression in the colon that is conducive for inflammation.


Asunto(s)
Colitis/microbiología , Dieta/efectos adversos , Fibras de la Dieta/deficiencia , Disbiosis/microbiología , Animales , Colitis/etiología , Colitis/genética , Colon/microbiología , Disbiosis/etiología , Disbiosis/genética , Inflamación , Mucosa Intestinal/microbiología , Ratones , Transportadores de Ácidos Monocarboxílicos/deficiencia , Transcriptoma
19.
Gynecol Endocrinol ; 24(5): 250-6, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18569028

RESUMEN

OBJECTIVES: The objectives of the present study were to evaluate the expression level of ATP-sensitive potassium (K(ATP)) channels in smooth muscle cells in human uterine leiomyoma and the involvement of the channel in potentiating effect of estrogen on leiomyoma growth. METHODS: Reverse transcription-polymerase chain reaction (RT-PCR), real-time PCR and Western blot were used for the identification and quantification of K(ATP)-channel subunits in the control myometrial and leiomyoma cells. Furthermore, we measured the K(ATP)-channel activity in enzymatically isolated single uterine smooth muscle cells by whole-cell patch-clamp recordings. The estrogen-induced cell proliferation in leiomyoma was measured by the MTT assay. RESULTS: The subunits of K(ATP) channels (Kir6.1, Kir6.2, SUR2B) were more highly expressed in leiomyoma cells than in control cells. The whole-cell currents mainly through K(ATP) channels were also greater in the leiomyoma cells. Estrogen applied in the bath solution could acutely enhance the channel activity. Estrogen-induced proliferation of the leiomyoma cells was inhibited by pretreatment with glibenclamide, a K(ATP)-channel inhibitor. CONCLUSION: Estrogen may induce the proliferation of leiomyoma cells, at least in part, by activating the K(ATP) channel. Increased expression of the K(ATP) channel may be a causal factor for the high growth rate of uterine leiomyoma.


Asunto(s)
Estradiol/farmacología , Canales KATP/biosíntesis , Leiomioma/metabolismo , Neoplasias Uterinas/metabolismo , Adulto , Procesos de Crecimiento Celular/fisiología , Receptor alfa de Estrógeno/biosíntesis , Receptor alfa de Estrógeno/genética , Receptor beta de Estrógeno/biosíntesis , Receptor beta de Estrógeno/genética , Femenino , Formazáns/química , Gliburida/farmacología , Humanos , Immunoblotting , Canales KATP/genética , Leiomioma/genética , Leiomioma/patología , Persona de Mediana Edad , Técnicas de Placa-Clamp , Pinacidilo/farmacología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sales de Tetrazolio/química , Regulación hacia Arriba/efectos de los fármacos , Neoplasias Uterinas/genética , Neoplasias Uterinas/patología
20.
Sci Rep ; 8(1): 2519, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29410496

RESUMEN

NaCT is a Na+-coupled transporter for citrate expressed in hepatocytes and neurons. It is the mammalian ortholog of INDY (I'm Not Dead Yet), a transporter which modifies lifespan in Drosophila. Here we describe a hitherto unknown transport system for citrate in mammalian cells. When liver and mammary epithelial cells were pretreated with the iron supplement ferric ammonium citrate (FAC), uptake of citrate increased >10-fold. Iron chelators abrogated the stimulation of citrate uptake in FAC-treated cells. The iron exporter ferroportin had no role in this process. The stimulation of citrate uptake also occurred when Fe3+ was added during uptake without pretreatment. Similarly, uptake of Fe3+ was enhanced by citrate. The Fe3+-citrate uptake was coupled to Na+. This transport system was detectable in primary hepatocytes and neuronal cell lines. The functional features of this citrate transport system distinguish it from NaCT. Loss-of-function mutations in NaCT cause early-onset epilepsy and encephalopathy; the newly discovered Na+-coupled Fe3+-citrate transport system might offer a novel treatment strategy for these patients to deliver citrate into affected neurons independent of NaCT. It also has implications to iron-overload conditions where circulating free iron increases, which would stimulate cellular uptake of citrate and consequently affect multiple metabolic pathways.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA