Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 921
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(12): 3125-3142.e25, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-33930289

RESUMEN

The N6-methyladenosine (m6A) RNA modification is used widely to alter the fate of mRNAs. Here we demonstrate that the C. elegans writer METT-10 (the ortholog of mouse METTL16) deposits an m6A mark on the 3' splice site (AG) of the S-adenosylmethionine (SAM) synthetase pre-mRNA, which inhibits its proper splicing and protein production. The mechanism is triggered by a rich diet and acts as an m6A-mediated switch to stop SAM production and regulate its homeostasis. Although the mammalian SAM synthetase pre-mRNA is not regulated via this mechanism, we show that splicing inhibition by 3' splice site m6A is conserved in mammals. The modification functions by physically preventing the essential splicing factor U2AF35 from recognizing the 3' splice site. We propose that use of splice-site m6A is an ancient mechanism for splicing regulation.


Asunto(s)
Adenosina/análogos & derivados , Sitios de Empalme de ARN/genética , Empalme del ARN/genética , Factor de Empalme U2AF/metabolismo , Adenosina/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Caenorhabditis elegans/genética , Secuencia Conservada/genética , Dieta , Células HeLa , Humanos , Intrones/genética , Metionina Adenosiltransferasa , Metilación , Metiltransferasas/química , Ratones , Mutación/genética , Conformación de Ácido Nucleico , Unión Proteica , Precursores del ARN/química , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Nuclear Pequeño , S-Adenosilmetionina , Transcriptoma/genética
2.
Cell ; 181(7): 1489-1501.e15, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32473127

RESUMEN

Understanding adaptive immunity to SARS-CoV-2 is important for vaccine development, interpreting coronavirus disease 2019 (COVID-19) pathogenesis, and calibration of pandemic control measures. Using HLA class I and II predicted peptide "megapools," circulating SARS-CoV-2-specific CD8+ and CD4+ T cells were identified in ∼70% and 100% of COVID-19 convalescent patients, respectively. CD4+ T cell responses to spike, the main target of most vaccine efforts, were robust and correlated with the magnitude of the anti-SARS-CoV-2 IgG and IgA titers. The M, spike, and N proteins each accounted for 11%-27% of the total CD4+ response, with additional responses commonly targeting nsp3, nsp4, ORF3a, and ORF8, among others. For CD8+ T cells, spike and M were recognized, with at least eight SARS-CoV-2 ORFs targeted. Importantly, we detected SARS-CoV-2-reactive CD4+ T cells in ∼40%-60% of unexposed individuals, suggesting cross-reactive T cell recognition between circulating "common cold" coronaviruses and SARS-CoV-2.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/inmunología , Epítopos de Linfocito T , Neumonía Viral/inmunología , Betacoronavirus/genética , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19 , Vacunas contra la COVID-19 , Convalecencia , Infecciones por Coronavirus/sangre , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/virología , Reacciones Cruzadas , Humanos , Leucocitos Mononucleares/inmunología , Pandemias , Neumonía Viral/sangre , Neumonía Viral/metabolismo , Neumonía Viral/virología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo , Proteínas Virales/metabolismo , Vacunas Virales/inmunología
3.
Cell ; 178(3): 515-517, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31348883

RESUMEN

Garcia-Campos et al. describe MAZTER-seq, which deploys a sequence-specific, methylation-sensitive bacterial single-stranded ribonuclease MazF to provide nucleotide-resolution quantification of m6A methylation sites. The study reveals many new sites and supports the idea of a predictable "m6A code," where methylation levels are dictated primarily by local sequence at the site of methylation.


Asunto(s)
Metilación de ADN , Ribonucleasas , Secuencia de Bases
4.
Mol Cell ; 82(9): 1678-1690.e12, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35305312

RESUMEN

The functional consequence of N6-methyladenosine (m6A) RNA modification is mediated by "reader" proteins of the YTH family. YTH domain-containing 2 (YTHDC2) is essential for mammalian fertility, but its molecular function is poorly understood. Here, we identify U-rich motifs as binding sites of YTHDC2 on 3' UTRs of mouse testicular RNA targets. Although its YTH domain is an m6A-binder in vitro, the YTH point mutant mice are fertile. Significantly, the loss of its 3'→5' RNA helicase activity causes mouse infertility, with the catalytic-dead mutation being dominant negative. Biochemical studies reveal that the weak helicase activity of YTHDC2 is enhanced by its interaction with the 5'→3' exoribonuclease XRN1. Single-cell transcriptomics indicate that Ythdc2 mutant mitotic germ cells transition into meiosis but accumulate a transcriptome with mixed mitotic/meiotic identity that fail to progress further into meiosis. Finally, our demonstration that ythdc2 mutant zebrafish are infertile highlights its conserved role in animal germ cell development.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Exorribonucleasas/metabolismo , ARN Helicasas , Pez Cebra , Animales , Fertilidad/genética , Mamíferos/metabolismo , Meiosis , Ratones , ARN/genética , ARN Helicasas/genética , ARN Helicasas/metabolismo , Pez Cebra/genética
5.
Cell ; 157(7): 1698-711, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24910301

RESUMEN

Germline-specific Piwi-interacting RNAs (piRNAs) protect animal genomes against transposons and are essential for fertility. piRNAs targeting active transposons are amplified by the ping-pong cycle, which couples Piwi endonucleolytic slicing of target RNAs to biogenesis of new piRNAs. Here, we describe the identification of a transient Amplifier complex that mediates biogenesis of secondary piRNAs in insect cells. Amplifier is nucleated by the DEAD box RNA helicase Vasa and contains the two Piwi proteins participating in the ping-pong loop, the Tudor protein Qin/Kumo and antisense piRNA guides. These components assemble on the surface of Vasa's helicase domain, which functions as an RNA clamp to anchor Amplifier onto transposon transcripts. We show that ATP-dependent RNP remodeling by Vasa facilitates transfer of 5' sliced piRNA precursors between ping-pong partners, and loss of this activity causes sterility in Drosophila. Our results reveal the molecular basis for the small RNA amplification that confers adaptive immunity against transposons.


Asunto(s)
Bombyx/metabolismo , Proteínas de Insectos/metabolismo , ARN Interferente Pequeño/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Bombyx/genética , Línea Celular , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Elementos Transponibles de ADN , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Femenino , Proteínas de Insectos/genética , Mutación , Ovario/citología , Ovario/metabolismo
6.
Genes Dev ; 34(11-12): 745-750, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32381626

RESUMEN

DNA methylation is a major silencing mechanism of transposable elements (TEs). Here we report that TEX15, a testis-specific protein, is required for TE silencing. TEX15 is expressed in embryonic germ cells and functions during genome-wide epigenetic reprogramming. The Tex15 mutant exhibits DNA hypomethylation in TEs at a level similar to Mili and Dnmt3c but not Miwi2 mutants. TEX15 is associated with MILI in testis. As loss of Tex15 causes TE desilencing with intact piRNA production, our results identify TEX15 as a new essential epigenetic regulator that may function as a nuclear effector of MILI to silence TEs by DNA methylation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Elementos Transponibles de ADN/genética , Silenciador del Gen/fisiología , Células Germinativas/metabolismo , Animales , Metilación de ADN , Células Germinales Embrionarias/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Ratones , Mutación
7.
Genes Dev ; 33(17-18): 1095-1097, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31481534

RESUMEN

RNA export is tightly coupled to splicing in metazoans. In the Drosophila germline, precursors for the majority of Piwi-interacting RNAs (piRNAs) are unspliced. In this issue of Genes & Development, Kneuss and colleagues (pp. 1208-1220) identify Nxf3 as a novel germline-specific export adapter for such unspliced transcripts. Their findings reveal the sequence of events leading from its role at the site of transcription to delivery of the cargo to cytoplasmic piRNA biogenesis sites.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster/genética , Transporte Activo de Núcleo Celular , Animales , Elementos Transponibles de ADN , Drosophila/genética , ARN Interferente Pequeño
8.
Mol Cell ; 71(6): 986-1000.e11, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30197299

RESUMEN

Internal modification of RNAs with N6-methyladenosine (m6A) is a highly conserved means of gene expression control. While the METTL3/METTL14 heterodimer adds this mark on thousands of transcripts in a single-stranded context, the substrate requirements and physiological roles of the second m6A writer METTL16 remain unknown. Here we describe the crystal structure of human METTL16 to reveal a methyltransferase domain furnished with an extra N-terminal module, which together form a deep-cut groove that is essential for RNA binding. When presented with a random pool of RNAs, METTL16 selects for methylation-structured RNAs where the critical adenosine is present in a bulge. Mouse 16-cell embryos lacking Mettl16 display reduced mRNA levels of its methylation target, the SAM synthetase Mat2a. The consequence is massive transcriptome dysregulation in ∼64-cell blastocysts that are unfit for further development. This highlights the role of an m6A RNA methyltransferase in facilitating early development via regulation of SAM availability.


Asunto(s)
Adenosina/análogos & derivados , Metiltransferasas/metabolismo , Metiltransferasas/ultraestructura , Adenosina/metabolismo , Animales , Desmetilación , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Expresión Génica/genética , Células HEK293 , Humanos , Metionina Adenosiltransferasa , Metilación , Metiltransferasas/fisiología , Ratones/embriología , Ratones Noqueados , ARN , Procesamiento Postranscripcional del ARN/fisiología , ARN Mensajero/metabolismo , ARN Nuclear Pequeño/metabolismo
9.
RNA ; 29(3): 308-316, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36617658

RESUMEN

Argonautes are small RNA-binding proteins, with some having small RNA-guided endonuclease (slicer) activity that cleaves target nucleic acids. One cardinal rule that is structurally defined is the inability of slicers to cleave target RNAs when nucleotide mismatches exist between the paired small RNA and the target at the cleavage site. Animal-specific PIWI clade Argonautes associate with PIWI-interacting RNAs (piRNAs) to silence transposable elements in the gonads, and this is essential for fertility. We previously demonstrated that purified endogenous mouse MIWI fails to cleave mismatched targets in vitro. Surprisingly, here we find using knock-in mouse models that target sites with cleavage-site mismatches at the 10th and 11th piRNA nucleotides are precisely sliced in vivo. This is identical to the slicing outcome in knock-in mice where targets are base-paired perfectly with the piRNA. Additionally, we find that pachytene piRNA-guided slicing in both these situations failed to initiate phased piRNA production from the specific target mRNA we studied. Instead, the two slicer cleavage fragments were retained in PIWI proteins as pre-piRNA and 17-19 nt by-product fragments. Our results indicate that PIWI slicing rules established in vitro are not respected in vivo, and that all targets of PIWI slicing are not substrates for piRNA biogenesis.


Asunto(s)
Elementos Transponibles de ADN , Testículo , Masculino , Ratones , Animales , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Testículo/metabolismo , Elementos Transponibles de ADN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN de Interacción con Piwi , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo
10.
RNA ; 29(5): 609-619, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36754578

RESUMEN

Eukaryotic mRNAs are modified at the 5' end with a methylated guanosine (m7G) that is attached to the transcription start site (TSS) nucleotide. The TSS nucleotide is 2'-O-methylated (Nm) by CMTR1 in organisms ranging from insects to human. In mammals, the TSS adenosine can be further N 6 -methylated by RNA polymerase II phosphorylated CTD-interacting factor 1 (PCIF1) to create m6Am. Curiously, the fly ortholog of mammalian PCIF1 is demonstrated to be catalytic-dead, and its functions are not known. Here, we show that Pcif1 mutant flies display a reduced fertility which is particularly marked in females. Deep sequencing analysis of Pcif1 mutant ovaries revealed transcriptome changes with a notable increase in expression of genes belonging to the mitochondrial ATP synthetase complex. Furthermore, the Pcif1 protein is distributed along euchromatic regions of polytene chromosomes, and the Pcif1 mutation behaved as a modifier of position-effect-variegation (PEV) suppressing the heterochromatin-dependent silencing of the white gene. Similar or stronger changes in the transcriptome and PEV phenotype were observed in flies that expressed a cytosolic version of Pcif1. These results point to a nuclear cotranscriptional gene regulatory role for the catalytic-dead fly Pcif1 that is probably based on its conserved ability to interact with the RNA polymerase II carboxy-terminal domain.


Asunto(s)
Drosophila , ARN Polimerasa II , Femenino , Animales , Humanos , Drosophila/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Fertilidad/genética , Transcriptoma , Nucleótidos/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Mamíferos/genética , Proteínas Nucleares/genética , Proteínas Adaptadoras Transductoras de Señales/genética
11.
Mol Cell ; 68(2): 374-387.e12, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29033321

RESUMEN

N6-methyladenosine (m6A) is an essential internal RNA modification that is critical for gene expression control in most organisms. Proteins with a YTH domain recognize m6A marks and are mediators of molecular functions like RNA splicing, mRNA decay, and translation control. Here we demonstrate that YTH domain-containing 2 (YTHDC2) is an m6A reader that is essential for male and female fertility in mice. High-throughput mapping of the m6A transcriptome and expression analysis in the Yhtdc2 mutant testes reveal an upregulation of m6A-enriched transcripts. Our biochemical studies indicate that YTHDC2 is an RNA-induced ATPase with a 3'→5' RNA helicase activity. Furthermore, YTHDC2 recruits the 5'→3' exoribonuclease XRN1 via Ankyrin repeats that are inserted in between the RecA modules of the RNA helicase domain. Our studies reveal a role for YTHDC2 in modulating the levels of m6A-modified germline transcripts to maintain a gene expression program that is conducive for progression through meiosis.


Asunto(s)
Adenosina/análogos & derivados , Regulación de la Expresión Génica/fisiología , Meiosis/fisiología , ARN Helicasas/metabolismo , ARN Mensajero/metabolismo , Adenosina/genética , Adenosina/metabolismo , Animales , Repetición de Anquirina , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Masculino , Ratones , Ratones Mutantes , Dominios Proteicos , ARN Helicasas/genética , ARN Mensajero/genética
12.
BMC Plant Biol ; 24(1): 262, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38594614

RESUMEN

BACKGROUND: Foliar diseases namely late leaf spot (LLS) and leaf rust (LR) reduce yield and deteriorate fodder quality in groundnut. Also the high oleic acid content has emerged as one of the most important traits for industries and consumers due to its increased shelf life and health benefits. RESULTS: Genetic mapping combined with pooled sequencing approaches identified candidate resistance genes (LLSR1 and LLSR2 for LLS and LR1 for LR) for both foliar fungal diseases. The LLS-A02 locus housed LLSR1 gene for LLS resistance, while, LLS-A03 housed LLSR2 and LR1 genes for LLS and LR resistance, respectively. A total of 49 KASPs markers were developed from the genomic regions of important disease resistance genes, such as NBS-LRR, purple acid phosphatase, pentatricopeptide repeat-containing protein, and serine/threonine-protein phosphatase. Among the 49 KASP markers, 41 KASPs were validated successfully on a validation panel of contrasting germplasm and breeding lines. Of the 41 validated KASPs, 39 KASPs were designed for rust and LLS resistance, while two KASPs were developed using fatty acid desaturase (FAD) genes to control high oleic acid levels. These validated KASP markers have been extensively used by various groundnut breeding programs across the world which led to development of thousands of advanced breeding lines and few of them also released for commercial cultivation. CONCLUSION: In this study, high-throughput and cost-effective KASP assays were developed, validated and successfully deployed to improve the resistance against foliar fungal diseases and oleic acid in groundnut. So far deployment of allele-specific and KASP diagnostic markers facilitated development and release of two rust- and LLS-resistant varieties and five high-oleic acid groundnut varieties in India. These validated markers provide opportunities for routine deployment in groundnut breeding programs.


Asunto(s)
Basidiomycota , Micosis , Resistencia a la Enfermedad/genética , Ácido Oléico , Fitomejoramiento , Mapeo Cromosómico , Basidiomycota/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
13.
Mol Biol Rep ; 51(1): 242, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300326

RESUMEN

Sulfur-containing amino acids (SAA), namely methionine, and cysteine are crucial essential amino acids (EAA) considering the dietary requirements of humans and animals. However, a few crop plants, especially legumes, are characterized with suboptimal levels of these EAA thereby limiting their nutritive value. Hence, improved comprehension of the mechanistic perspective of sulfur transport and assimilation into storage reserve, seed storage protein (SSP), is imperative. Efforts to augment the level of SAA in seed storage protein form an integral component of strategies to balance nutritive quality and quantity. In this review, we highlight the emerging trends in the sulfur biofortification approaches namely transgenics, genetic and molecular breeding, and proteomic rebalancing with sulfur nutrition. The transgenic 'push and pull strategy' could enhance sulfur capture and storage by expressing genes that function as efficient transporters, sulfate assimilatory enzymes, sulfur-rich foreign protein sinks, or by suppressing catabolic enzymes. Modern molecular breeding approaches that adopt high throughput screening strategies and machine learning algorithms are invaluable in identifying candidate genes and alleles associated with SAA content and developing improved crop varieties. Sulfur is an essential plant nutrient and its optimal uptake is crucial for seed sulfur metabolism, thereby affecting seed quality and yields through proteomic rebalance between sulfur-rich and sulfur-poor seed storage proteins.


Asunto(s)
Aminoácidos Esenciales , Proteómica , Animales , Humanos , Transporte Biológico , Proteínas de Almacenamiento de Semillas , Azufre , Sulfatos
14.
Mol Cell ; 61(1): 138-52, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26669262

RESUMEN

PIWI-interacting RNAs (piRNAs) guide PIWI proteins to suppress transposons in the cytoplasm and nucleus of animal germ cells, but how silencing in the two compartments is coordinated is not known. Here we demonstrate that endonucleolytic slicing of a transcript by the cytosolic mouse PIWI protein MILI acts as a trigger to initiate its further 5'→3' processing into non-overlapping fragments. These fragments accumulate as new piRNAs within both cytosolic MILI and the nuclear MIWI2. We also identify Exonuclease domain-containing 1 (EXD1) as a partner of the MIWI2 piRNA biogenesis factor TDRD12. EXD1 homodimers are inactive as a nuclease but function as an RNA adaptor within a PET (PIWI-EXD1-Tdrd12) complex. Loss of Exd1 reduces sequences generated by MILI slicing, impacts biogenesis of MIWI2 piRNAs, and de-represses LINE1 retrotransposons. Thus, piRNA biogenesis triggered by PIWI slicing, and promoted by EXD1, ensures that the same guides instruct PIWI proteins in the nucleus and cytoplasm.


Asunto(s)
Proteínas Argonautas/metabolismo , Núcleo Celular/enzimología , Citosol/enzimología , Exonucleasas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Argonautas/química , Proteínas Argonautas/genética , Proteínas Portadoras/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Exonucleasas/química , Exonucleasas/genética , Femenino , Regulación de la Expresión Génica , Masculino , Ratones Transgénicos , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética
15.
Plant Cell Rep ; 43(4): 108, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557872

RESUMEN

KEY MESSAGE: The CcGRXS12 gene protects plants from cellular oxidative damage that are caused by both biotic and abiotic stresses. The protein possesses GSH-disulphide oxidoreductase property but lacks Fe-S cluster assembly mechanism. Glutaredoxins (Grxs) are small, ubiquitous and multi-functional proteins. They are present in different compartments of plant cells. A chloroplast targeted Class I GRX (CcGRXS12) gene was isolated from Capsicum chinense during the pepper mild mottle virus (PMMoV) infection. Functional characterization of the gene was performed in Nicotiana benthamiana transgenic plants transformed with native C. chinense GRX (Nb:GRX), GRX-fused with GFP (Nb:GRX-GFP) and GRX-truncated for chloroplast sequences fused with GFP (Nb:Δ2MGRX-GFP). Overexpression of CcGRXS12 inhibited the PMMoV-I accumulation at the later stage of infection, accompanied with the activation of salicylic acid (SA) pathway pathogenesis-related (PR) transcripts and suppression of JA/ET pathway transcripts. Further, the reduced accumulation of auxin-induced Glutathione-S-Transferase (pCNT103) in CcGRXS12 overexpressing lines indicated that the protein could protect the plants from the oxidative stress caused by the virus. PMMoV-I infection increased the accumulation of pyridine nucleotides (PNs) mainly due to the reduced form of PNs (NAD(P)H), and it was high in Nb:GRX-GFP lines compared to other transgenic lines. Apart from biotic stress, CcGRXS12 protects the plants from abiotic stress conditions caused by H2O2 and herbicide paraquat. CcGRXS12 exhibited GSH-disulphide oxidoreductase activity in vitro; however, it was devoid of complementary Fe-S cluster assembly mechanism found in yeast. Overall, this study proves that CcGRXS12 plays a crucial role during biotic and abiotic stress in plants.


Asunto(s)
Capsicum , Tobamovirus , Capsicum/genética , Capsicum/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Peróxido de Hidrógeno , Oxidación-Reducción , Disulfuros
16.
Optom Vis Sci ; 101(3): 164-172, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38546758

RESUMEN

SIGNIFICANCE: A snapshot intraocular pressure (IOP) is ineffective in identifying the IOP peak and fluctuation, especially during sleep. Because IOP variability plays a significant role in the progression of glaucoma, monitoring the IOP, especially during sleep, is essential to capture the dynamic nature of IOP. PURPOSE: We aimed to design an ocular pressure estimator (OPE) that can reliably and accurately measure the IOP noninvasively over closed-eyelid condition. METHODS: Ocular pressure estimator works on the principle that the external pressure applied by raising the IOP of the eyeball is transmitted through a compressible septum to the pressure sensor, thus recording the IOP. A fluid-filled pouch with a pressure sensor was placed over a rubber glove mimicking the eyelid (septum), covering the cornea of enucleated goat eyeballs. A pressure-controlled setup was connected to a goat cadaver eye, which was validated by a rebound tonometer. Cannulation of eyeballs through the lower limbus had the least difference from the control setup values documented using rebound tonometer, compared with cannulation through the optic nerve. Intraocular pressures ranging from 3 to 30 mmHg was induced, and the outputs recorded using OPE were amplified and recorded for 10 minutes (n = 10 eyes). We stratified the randomization of the number of times and the induced pressures. RESULTS: The measurements recorded were found to be linear when measured against an IOP range of 3 to 30 mmHg. The device has excellent reliability (intraclass correlation coefficient, 0.998). The repeatability coefficient and coefficient of variations were 4.24 (3.60 to 4.87) and 8.61% (7.33 to 9.90), respectively. The overall mean difference ± SD between induced IOP and the OPE was 0.22 ± 3.50 (95% confidence interval, -0.35 to 0.79) mmHg across all IOP ranges. CONCLUSIONS: Ocular pressure estimator offers a promising approach for reliably and accurately measuring IOP and its fluctuation noninvasively under a condition mimicking a closed eye.


Asunto(s)
Presión Intraocular , Tonometría Ocular , Animales , Reproducibilidad de los Resultados , Párpados , Cabras
17.
Ophthalmic Physiol Opt ; 44(2): 378-387, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38149468

RESUMEN

PURPOSE: Evidence suggests that eye movements have potential as a tool for detecting glaucomatous visual field defects. This study evaluated the influence of sampling frequency on eye movement parameters in detecting glaucomatous visual field defects during a free-viewing task. METHODS: We investigated eye movements in two sets of experiments: (a) young adults with and without simulated visual field defects and (b) glaucoma patients and age-matched controls. In Experiment 1, we recruited 30 healthy volunteers. Among these, 10 performed the task with a gaze-contingent superior arcuate (SARC) scotoma, 10 performed the task with a gaze-contingent biarcuate (BARC) scotoma and 10 performed the task without a simulated scotoma (NoSim). The experimental task involved participants freely exploring 100 images, each for 4 s. Eye movements were recorded using the LiveTrack Lightning eye-tracker (500 Hz). In Experiment 2, we recruited 20 glaucoma patients and 16 age-matched controls. All participants underwent similar experimental tasks as in Experiment 1, except only 37 images were shown for exploration. To analyse the effect of sampling frequency, data were downsampled to 250, 120 and 60 Hz. Eye movement parameters, such as the number of fixations, fixation duration, saccadic amplitude and bivariate contour ellipse area (BCEA), were computed across various sampling frequencies. RESULTS: Two-way ANOVA revealed no significant effects of sampling frequency on fixation duration (simulation, p = 0.37; glaucoma patients, p = 0.95) and BCEA (simulation, p = 0.84; glaucoma patients: p = 0.91). BCEA showed good distinguishability in differentiating groups across different sampling frequencies, whereas fixation duration failed to distinguish between glaucoma patients and controls. Number of fixations and saccade amplitude showed variations with sampling frequency in both simulations and glaucoma patients. CONCLUSION: In both simulations and glaucoma patients, BCEA consistently differentiated them from controls across various sampling frequencies.


Asunto(s)
Glaucoma , Campos Visuales , Adulto Joven , Humanos , Escotoma , Movimientos Oculares , Trastornos de la Visión , Glaucoma/diagnóstico
18.
Pediatr Radiol ; 54(1): 20-26, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37962606

RESUMEN

The global temperature has been increasing resulting in climate change. This negatively impacts planetary health that disproportionately affects the most vulnerable among us, especially children. Extreme weather events, such as hurricanes, tornadoes, wildfires, flooding, and heatwaves, are becoming more frequent and severe, posing a significant threat to our patients' health, safety, and security. Concurrently, shifts in environmental exposures, including air pollution, allergens, pathogenic vectors, and microplastics, further exacerbate the risks faced by children. In this paper, we provide an overview of pediatric illnesses that are becoming more prevalent and severe because of extreme weather events, global temperature increases, and shifts in environmental exposures. As members of pediatric health care teams, it is crucial for pediatric radiologists to be knowledgeable about the impacts of climate change on our patients, and continue to advocate for safe, healthier environments for our patients.


Asunto(s)
Biodiversidad , Radiología , Humanos , Niño , Plásticos , Temperatura , Cambio Climático
19.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38473933

RESUMEN

Loss of function of members of the muscleblind-like (MBNL) family of RNA binding proteins has been shown to play a key role in the spliceopathy of RNA toxicity in myotonic dystrophy type 1 (DM1), the most common muscular dystrophy affecting adults and children. MBNL1 and MBNL2 are the most abundantly expressed members in skeletal muscle. A key aspect of DM1 is poor muscle regeneration and repair, leading to dystrophy. We used a BaCl2-induced damage model of muscle injury to study regeneration and effects on skeletal muscle satellite cells (MuSCs) in Mbnl1∆E3/∆E3 and Mbnl2∆E2/∆E2 knockout mice. Similar experiments have previously shown deleterious effects on these parameters in mouse models of RNA toxicity. Muscle regeneration in Mbnl1 and Mbnl2 knockout mice progressed normally with no obvious deleterious effects on MuSC numbers or increased expression of markers of fibrosis. Skeletal muscles in Mbnl1∆E3/∆E3/ Mbnl2∆E2/+ mice showed increased histopathology but no deleterious reductions in MuSC numbers and only a slight increase in collagen deposition. These results suggest that factors beyond the loss of MBNL1/MBNL2 and the associated spliceopathy are likely to play a key role in the defects in skeletal muscle regeneration and deleterious effects on MuSCs that are seen in mouse models of RNA toxicity due to expanded CUG repeats.


Asunto(s)
Empalme Alternativo , Distrofia Miotónica , Humanos , Niño , Ratones , Animales , Distrofia Miotónica/genética , Músculo Esquelético/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo
20.
Homeopathy ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821071

RESUMEN

BACKGROUND: Even though several initiatives have been undertaken in different locations worldwide to collect clinical data in homeopathy, it is important to further investigate these aspects in the context of health care in India. OBJECTIVE: The study aimed to gather and analyze patients' clinical data and to derive insights into homeopathic treatment using an internet-based software program for data storage, retrieval and repertorization. METHODS: A multi-center observational study was conducted across 14 homeopathy outpatient clinics in India that are affiliated with the Central Council for Research in Homoeopathy (CCRH). Patient symptoms and demographic details were documented anonymously, and prescriptions were guided by repertorial suggestions from the Vithoulkas Compass software. During follow-up visits, treatment outcome was also recorded using an online assessment form. A retrospective analysis of data on patients' demographics, follow-up visits, morbidity (International Classification of Diseases 11th Revision), rubrics used, prescribed medicines and the level of improvement was achieved using Microsoft Excel-generated pivot tables. RESULTS: Throughout the study duration of one year a total of 2,811 patients attended the 14 outpatient clinics, of whom 2,468 were new patients with a total of 2,172 initial homeopathic prescription entries. Across the study, there were 3,491 prescriptions and 1,628 follow-up consultations for 868 follow-up patients, all of which data were thoroughly analyzed. The highest frequency of patients was in the 20-49 age group, and a higher proportion of the patients overall was female. Musculoskeletal, dermatological and respiratory complaints were the most frequently reported. The rubrics "Desire for sweets" and "Desire for spices" emerged as the most commonly used in the repertorizations. Further, Sulphur stood out as the most commonly prescribed medicine overall. With homeopathic treatment, some degree of clinical improvement was reported in 86% of the follow-up cases. CONCLUSION: Homeopathy is prescribed in CCRH outpatient clinics for a wide range of ailments in people across India, with at least some clinical improvement noted in a high proportion of those patients. The large-scale systematic data collection in these clinics has provided clear insights into the use and clinical value of homeopathy in India, with the potential to build a substantive nationwide data inventory over time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA