Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genome Res ; 31(6): 1024-1034, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33858842

RESUMEN

Transcription is controlled by interactions of cis-acting DNA elements with diffusible trans-acting factors. Changes in cis or trans factors can drive expression divergence within and between species, and their relative prevalence can reveal the evolutionary history and pressures that drive expression variation. Previous work delineating the mode of expression divergence in animals has largely used whole-body expression measurements in one condition. Because cis-acting elements often drive expression in a subset of cell types or conditions, these measurements may not capture the complete contribution of cis-acting changes. Here, we quantify the mode of expression divergence in the Drosophila fat body, the primary immune organ, in several conditions, using two geographically distinct lines of D. melanogaster and their F1 hybrids. We measured expression in the absence of infection and in infections with Gram-negative S. marcescens or Gram-positive E. faecalis bacteria, which trigger the two primary signaling pathways in the Drosophila innate immune response. The mode of expression divergence strongly depends on the condition, with trans-acting effects dominating in response to Gram-negative infection and cis-acting effects dominating in Gram-positive and preinfection conditions. Expression divergence in several receptor proteins may underlie the infection-specific trans effects. Before infection, when the fat body has a metabolic role, there are many compensatory effects, changes in cis and trans that counteract each other to maintain expression levels. This work shows that within a single tissue, the mode of expression divergence varies between conditions and suggests that these differences reflect the diverse evolutionary histories of host-pathogen interactions.


Asunto(s)
Proteínas de Drosophila , Drosophila , Cuerpo Adiposo , Expresión Génica , Animales , Infecciones Bacterianas/genética , Evolución Biológica , Drosophila/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Cuerpo Adiposo/inmunología , Cuerpo Adiposo/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos
2.
iScience ; 25(11): 105378, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36345341

RESUMEN

The innate immune system is critical for infection survival. Drosophila melanogaster is a key model for understanding the evolution and dynamics of innate immunity. Current toolsets for fly infection studies are limited in throughput and, because of their destructive nature, cannot generate longitudinal measurements in individual animals. We report a bioluminescent imaging strategy enabling non-invasive characterization of pathogen load. By using Escherichia coli expressing the ilux operon, we demonstrate that photon flux from autobioluminescent bacteria can be used to monitor pathogen loads in individual, living flies. Because animal sacrifice is not necessary to estimate pathogen load, stochastic responses to infection can be characterized in individuals over time. The high temporal resolution of bioluminescence imaging enables visualization of the dynamics of microbial clearance on the hours time-scale. This non-invasive imaging strategy provides a simple and scalable platform to observe changes in pathogen load in vivo over time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA