Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 293(3): 1040-1053, 2018 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-29180451

RESUMEN

L-type voltage-gated CaV1.2 calcium channels (CaV1.2) are key regulators of neuronal excitability, synaptic plasticity, and excitation-transcription coupling. Surface-exposed CaV1.2 distributes in clusters along the dendrites of hippocampal neurons. A permanent exchange between stably clustered and laterally diffusive extra-clustered channels maintains steady-state levels of CaV1.2 at dendritic signaling domains. A dynamic equilibrium between anchored and diffusive receptors is a common feature among ion channels and is crucial to modulate signaling transduction. Despite the importance of this fine regulatory system, the molecular mechanisms underlying the surface dynamics of CaV1.2 are completely unexplored. Here, we examined the dynamic states of CaV1.2 depending on phosphorylation on Ser-1700 and Ser-1928 at the channel C terminus. Phosphorylation at these sites is strongly involved in CaV1.2-mediated nuclear factor of activated T cells (NFAT) signaling, long-term potentiation, and responsiveness to adrenergic stimulation. We engineered CaV1.2 constructs mimicking phosphorylation at Ser-1700 and Ser-1928 and analyzed their behavior at the membrane by immunolabeling protocols, fluorescence recovery after photobleaching, and single particle tracking. We found that the phosphomimetic S1928E variant increases the mobility of CaV1.2 without altering the steady-state maintenance of cluster in young neurons and favors channel stabilization later in differentiation. Instead, mimicking phosphorylation at Ser-1700 promoted the diffusive state of CaV1.2 irrespective of the differentiation stage. Together, these results reveal that phosphorylation could contribute to the establishment of channel anchoring mechanisms depending on the neuronal differentiation state. Finally, our findings suggest a novel mechanism by which phosphorylation at the C terminus regulates calcium signaling by tuning the content of CaV1.2 at signaling complexes.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Hipocampo/citología , Neuronas/citología , Neuronas/metabolismo , Animales , Electrofisiología , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Simulación de Dinámica Molecular , Fosforilación , Ratas , Ratas Sprague-Dawley
2.
PLoS One ; 10(8): e0135084, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26241051

RESUMEN

In the yeast Saccharomyces cerevisiae, phosphatidylcholine (PC), the major phospholipid (PL) of all organelle membranes, is synthesized via two different pathways. Methylation of phosphatidylethanolamine (PE) catalyzed by the methyl transferases Cho2p/Pem1p and Opi3p/Pem2p as well as incorporation of choline through the CDP (cytidine diphosphate)-choline branch of the Kennedy pathway lead to PC formation. To determine the contribution of these two pathways to the supply of PC to peroxisomes (PX), yeast mutants bearing defects in the two pathways were cultivated under peroxisome inducing conditions, i.e. in the presence of oleic acid, and subjected to biochemical and cell biological analyses. Phenotype studies revealed compromised growth of both the cho20Δopi3Δ (mutations in the methylation pathway) and the cki1Δdpl1Δeki1Δ (mutations in the CDP-choline pathway) mutant when grown on oleic acid. Analysis of peroxisomes from the two mutant strains showed that both pathways produce PC for the supply to peroxisomes, although the CDP-choline pathway seemed to contribute with higher efficiency than the methylation pathway. Changes in the peroxisomal lipid pattern of mutants caused by defects in the PC biosynthetic pathways resulted in changes of membrane properties as shown by anisotropy measurements with fluorescent probes. In summary, our data define the origin of peroxisomal PC and demonstrate the importance of PC for peroxisome membrane formation and integrity.


Asunto(s)
Peroxisomas/metabolismo , Fosfatidilcolinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Citidina Difosfato Colina/metabolismo , Polarización de Fluorescencia , Proteínas Fúngicas/genética , Membranas Intracelulares/metabolismo , Fluidez de la Membrana , Metilación , Microscopía Electrónica , Microsomas/metabolismo , Mitocondrias/metabolismo , Mutación , Fosfolípidos/aislamiento & purificación , Fosfolípidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Esteroles/metabolismo
3.
Chem Phys Lipids ; 189: 39-47, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26028612

RESUMEN

The oxidized phospholipids (oxPL) 1-palmitoyl-2-glutaroyl-sn-glycero-3-phosphocholine (PGPC) and 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC) are generated from 1-palmitoyl-2-arachidonoyl-phosphatidylcholine under conditions of oxidative stress. These oxPL are components of oxidized low density lipoprotein. They are cytotoxic in cells of the arterial wall thus playing an important role in the development and progression of atherosclerosis. The toxic lipid effects include inflammation and under sustained exposure apoptosis. The aim of this study was to find out whether such toxic effects, especially apoptosis, are also elicited by oxPL in melanocytic cells in order to assess their potential for therapeutic intervention. FACS analysis after staining with fluorescent markers was performed to identify the mode of lipid-induced cell death. Activation of sphingomyelinase which generates apoptotic ceramide was measured using an established fluorescence assay. Ceramide profiles were determined by mass spectrometry. We found that 50µM POVPC induce cell death in human melanoma cells isolated from different stages of tumor progression but affect primary human melanocytes to a much lesser extent. In contrast, 50µM PGPC was only apoptotic in two out of four cell lines used in this study. The toxicity of both compounds was associated with efficient lipid uptake into the tumor cells and activation of acid sphingomyelinase. In several but not all melanoma cell lines used in this study, activation of the sphingomyelin degrading enzyme correlated with an increase in the concentration of the apoptotic mediator ceramide. The individual patterns of the newly formed ceramide species were also cell line-specific. PGPC and POVPC may be considered potential drug candidates for topical skin cancer treatment. They are toxic in malignant cells. The respective oxidized phospholipids are naturally formed in the body and resistance to these compounds is not likely to occur.


Asunto(s)
Apoptosis/efectos de los fármacos , Lipoproteínas LDL/toxicidad , Fosfatidilcolinas/química , Compuestos de Boro/química , Línea Celular Tumoral , Ceramidas/análisis , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Humanos , Lipoproteínas LDL/química , Melanoma/metabolismo , Melanoma/patología , Microscopía Fluorescente , Oxidación-Reducción , Éteres Fosfolípidos/química , Éteres Fosfolípidos/toxicidad , Esfingomielina Fosfodiesterasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA