RESUMEN
OBJECTIVE: Neonatal lupus erythematosus (NLE) may develop after transplacental transfer of maternal autoantibodies with cardiac manifestations (congenital heart block, CHB) including atrioventricular block, atrial and ventricular arrhythmias, and cardiomyopathies. The association with anti-Ro/SSA antibodies is well established, but a recurrence rate of only 12%-16% despite persisting maternal autoantibodies suggests that additional factors are required for CHB development. Here, we identify fetal genetic variants conferring risk of CHB and elucidate their effects on cardiac function. METHODS: A genome-wide association study was performed in families with at least one case of CHB. Gene expression was analysed by microarrays, RNA sequencing and PCR and protein expression by western blot, immunohistochemistry, immunofluorescence and flow cytometry. Calcium regulation and connectivity were analysed in primary cardiomyocytes and cells induced from pleuripotent stem cells. Fetal heart performance was analysed by Doppler/echocardiography. RESULTS: We identified DNAJC6 as a novel fetal susceptibility gene, with decreased cardiac expression of DNAJC6 associated with the disease risk genotype. We further demonstrate that fetal cardiomyocytes deficient in auxilin, the protein encoded by DNAJC6, have abnormal connectivity and Ca2+ homoeostasis in culture, as well as decreased cell surface expression of the Cav1.3 calcium channel. Doppler echocardiography of auxilin-deficient fetal mice revealed cardiac NLE abnormalities in utero, including abnormal heart rhythm with atrial and ventricular ectopias, as well as a prolonged atrioventricular time intervals. CONCLUSIONS: Our study identifies auxilin as the first genetic susceptibility factor in NLE modulating cardiac function, opening new avenues for the development of screening and therapeutic strategies in CHB.
Asunto(s)
Bloqueo Atrioventricular , Auxilinas , Animales , Anticuerpos Antinucleares , Bloqueo Atrioventricular/genética , Autoanticuerpos , Corazón Fetal , Estudio de Asociación del Genoma Completo , Bloqueo Cardíaco/congénito , Lupus Eritematoso Sistémico/congénito , RatonesRESUMEN
Objective- The Wnt/ß-catenin pathway orchestrates development of the blood-brain barrier, but the downstream mechanisms involved at different developmental windows and in different central nervous system (CNS) tissues have remained elusive. Approach and Results- Here, we create a new mouse model allowing spatiotemporal investigations of Wnt/ß-catenin signaling by induced overexpression of Axin1, an inhibitor of ß-catenin signaling, specifically in endothelial cells ( Axin1 iEC- OE). AOE (Axin1 overexpression) in Axin1 iEC- OE mice at stages following the initial vascular invasion of the CNS did not impair angiogenesis but led to premature vascular regression followed by progressive dilation and inhibition of vascular maturation resulting in forebrain-specific hemorrhage 4 days post-AOE. Analysis of the temporal Wnt/ß-catenin driven CNS vascular development in zebrafish also suggested that Axin1 iEC- OE led to CNS vascular regression and impaired maturation but not inhibition of ongoing angiogenesis within the CNS. Transcriptomic profiling of isolated, ß-catenin signaling-deficient endothelial cells during early blood-brain barrier-development (E11.5) revealed ECM (extracellular matrix) proteins as one of the most severely deregulated clusters. Among the 20 genes constituting the forebrain endothelial cell-specific response signature, 8 ( Adamtsl2, Apod, Ctsw, Htra3, Pglyrp1, Spock2, Ttyh2, and Wfdc1) encoded bona fide ECM proteins. This specific ß-catenin-responsive ECM signature was also repressed in Axin1 iEC- OE and endothelial cell-specific ß-catenin-knockout mice ( Ctnnb1-KOiEC) during initial blood-brain barrier maturation (E14.5), consistent with an important role of Wnt/ß-catenin signaling in orchestrating the development of the forebrain vascular ECM. Conclusions- These results suggest a novel mechanism of establishing a CNS endothelium-specific ECM signature downstream of Wnt-ß-catenin that impact spatiotemporally on blood-brain barrier differentiation during forebrain vessel development. Visual Overview- An online visual overview is available for this article.
Asunto(s)
Matriz Extracelular/fisiología , Prosencéfalo/irrigación sanguínea , Vía de Señalización Wnt/fisiología , beta Catenina/fisiología , Animales , Proteína Axina/fisiología , Barrera Hematoencefálica , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/fisiología , Remodelación Vascular , Pez CebraRESUMEN
Objective- Pathological neovascularization is crucial for progression and morbidity of serious diseases such as cancer, diabetic retinopathy, and age-related macular degeneration. While mechanisms of ongoing pathological neovascularization have been extensively studied, the initiating pathological vascular remodeling (PVR) events, which precede neovascularization remains poorly understood. Here, we identify novel molecular and cellular mechanisms of preneovascular PVR, by using the adult choriocapillaris as a model. Approach and Results- Using hypoxia or forced overexpression of VEGF (vascular endothelial growth factor) in the subretinal space to induce PVR in zebrafish and rats respectively, and by analyzing choriocapillaris membranes adjacent to choroidal neovascular lesions from age-related macular degeneration patients, we show that the choriocapillaris undergo robust induction of vascular intussusception and permeability at preneovascular stages of PVR. This PVR response included endothelial cell proliferation, formation of endothelial luminal processes, extensive vesiculation and thickening of the endothelium, degradation of collagen fibers, and splitting of existing extravascular columns. RNA-sequencing established a role for endothelial tight junction disruption, cytoskeletal remodeling, vesicle- and cilium biogenesis in this process. Mechanistically, using genetic gain- and loss-of-function zebrafish models and analysis of primary human choriocapillaris endothelial cells, we determined that HIF (hypoxia-induced factor)-1α-VEGF-A-VEGFR2 signaling was important for hypoxia-induced PVR. Conclusions- Our findings reveal that PVR involving intussusception and splitting of extravascular columns, endothelial proliferation, vesiculation, fenestration, and thickening is induced before neovascularization, suggesting that identifying and targeting these processes may prevent development of advanced neovascular disease in the future. Visual Overview- An online visual overview is available for this article.
Asunto(s)
Neovascularización Patológica/etiología , Remodelación Vascular/fisiología , Adulto , Animales , Humanos , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Degeneración Macular/etiología , Factor A de Crecimiento Endotelial Vascular/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/fisiología , Pez CebraRESUMEN
BACKGROUND & AIMS: Alagille syndrome is a genetic disorder characterized by cholestasis, ocular abnormalities, characteristic facial features, heart defects, and vertebral malformations. Most cases are associated with mutations in JAGGED1 (JAG1), which encodes a Notch ligand, although it is not clear how these contribute to disease development. We aimed to develop a mouse model of Alagille syndrome to elucidate these mechanisms. METHODS: Mice with a missense mutation (H268Q) in Jag1 (Jag1+/Ndr mice) were outbred to a C3H/C57bl6 background to generate a mouse model for Alagille syndrome (Jag1Ndr/Ndr mice). Liver tissues were collected at different timepoints during development, analyzed by histology, and liver organoids were cultured and analyzed. We performed transcriptome analysis of Jag1Ndr/Ndr livers and livers from patients with Alagille syndrome, cross-referenced to the Human Protein Atlas, to identify commonly dysregulated pathways and biliary markers. We used species-specific transcriptome separation and ligand-receptor interaction assays to measure Notch signaling and the ability of JAG1Ndr to bind or activate Notch receptors. We studied signaling of JAG1 and JAG1Ndr via NOTCH 1, NOTCH2, and NOTCH3 and resulting gene expression patterns in parental and NOTCH1-expressing C2C12 cell lines. RESULTS: Jag1Ndr/Ndr mice had many features of Alagille syndrome, including eye, heart, and liver defects. Bile duct differentiation, morphogenesis, and function were dysregulated in newborn Jag1Ndr/Ndr mice, with aberrations in cholangiocyte polarity, but these defects improved in adult mice. Jag1Ndr/Ndr liver organoids collapsed in culture, indicating structural instability. Whole-transcriptome sequence analyses of liver tissues from mice and patients with Alagille syndrome identified dysregulated genes encoding proteins enriched at the apical side of cholangiocytes, including CFTR and SLC5A1, as well as reduced expression of IGF1. Exposure of Notch-expressing cells to JAG1Ndr, compared with JAG1, led to hypomorphic Notch signaling, based on transcriptome analysis. JAG1-expressing cells, but not JAG1Ndr-expressing cells, bound soluble Notch1 extracellular domain, quantified by flow cytometry. However, JAG1 and JAG1Ndr cells each bound NOTCH2, and signaling from NOTCH2 signaling was reduced but not completely inhibited, in response to JAG1Ndr compared with JAG1. CONCLUSIONS: In mice, expression of a missense mutant of Jag1 (Jag1Ndr) disrupts bile duct development and recapitulates Alagille syndrome phenotypes in heart, eye, and craniofacial dysmorphology. JAG1Ndr does not bind NOTCH1, but binds NOTCH2, and elicits hypomorphic signaling. This mouse model can be used to study other features of Alagille syndrome and organ development.
Asunto(s)
Síndrome de Alagille/genética , Proteína Jagged-1/genética , Mutación Missense , Síndrome de Alagille/metabolismo , Síndrome de Alagille/patología , Animales , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Diferenciación Celular , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Proteína Jagged-1/metabolismo , Masculino , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Morfogénesis , Organoides , Fenotipo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Transducción de Señal , TransfecciónRESUMEN
The presence of the PTPN22 risk allele (1858T) is associated with several autoimmune diseases including rheumatoid arthritis (RA). Despite a number of studies exploring the function of PTPN22 in T cells, the exact impact of the PTPN22 risk allele on T-cell function in humans is still unclear. In this study, using RNA sequencing, we show that, upon TCR-activation, naïve human CD4+ T cells homozygous for the PTPN22 risk allele overexpress a set of genes including CFLAR and 4-1BB, which are important for cytotoxic T-cell differentiation. Moreover, the protein expression of the T-box transcription factor Eomesodermin (EOMES) was increased in T cells from healthy donors homozygous for the PTPN22 risk allele and correlated with a decreased number of naïve CD4+ T cells. There was no difference in the frequency of other CD4+ T-cell subsets (Th1, Th17, Tfh, Treg). Finally, an accumulation of EOMES+ CD4+ T cells was observed in synovial fluid of RA patients with a more pronounced production of Perforin-1 in PTPN22 risk allele carriers. Altogether, we propose a novel mechanism of action of PTPN22 risk allele through the generation of cytotoxic CD4+ T cells and identify EOMES+ CD4+ T cells as a relevant T-cell subset in RA pathogenesis.
Asunto(s)
Artritis Reumatoide/patología , Linfocitos T CD4-Positivos/inmunología , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética , Proteínas de Dominio T Box/metabolismo , Linfocitos T Citotóxicos/inmunología , Ligando 4-1BB/biosíntesis , Artritis Reumatoide/genética , Secuencia de Bases , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/biosíntesis , Diferenciación Celular/inmunología , Humanos , Perforina/biosíntesis , Receptores de Antígenos de Linfocitos T/inmunología , Análisis de Secuencia de ARN , Líquido Sinovial/citología , Linfocitos T Citotóxicos/citologíaRESUMEN
We aimed to evaluate in vivo effects of abatacept on phenotypes of T and B cells in the circulation of myositis patients in a sub-study of the ARTEMIS trial. Twelve patients with paired frozen PBMCs before and after 6-month abatacept treatment were included in this sub-study where mass cytometry (CyTOF) was chosen as a technology to be tested for its utility in a real-life clinical immune monitoring setting. Using CyTOF, the peripheral T cell phenotypes demonstrated considerable variation over time and between individuals precluding the identification of treatment-specific changes. We therefore conclude that studies of patient cohorts displaying wide clinical heterogeneity using mass cytometry must be relatively large in order to be suited for discovery research and immune monitoring. Still, we did find some correlations with functional muscle outcome, namely positive correlations between the ratio of CD4+ T cells and CD8+ T cells (CD4/CD8) in peripheral blood samples both at baseline and after treatment with muscle endurance improvement as assessed by the functional index-2 (FI-2) test. Our data suggest that the CD4/CD8 ratio in circulation at time of active disease may be a predictor of treatment efficacy in myositis patients.
Asunto(s)
Abatacept/uso terapéutico , Subgrupos de Linfocitos B/efectos de los fármacos , Dermatomiositis/inmunología , Inmunosupresores/uso terapéutico , Polimiositis/tratamiento farmacológico , Subgrupos de Linfocitos T/efectos de los fármacos , Adulto , Dermatomiositis/sangre , Dermatomiositis/tratamiento farmacológico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Polimiositis/sangre , Polimiositis/inmunologíaRESUMEN
Pluripotent embryonic stem (ES) cells can generate all cell types, but how cell lineages are initially specified and maintained during development remains largely unknown. Different classes of Sox transcription factors are expressed during neurogenesis and have been assigned important roles from early lineage specification to neuronal differentiation. Here we characterize the genome-wide binding for Sox2, Sox3, and Sox11, which have vital functions in ES cells, neural precursor cells (NPCs), and maturing neurons, respectively. The data demonstrate that Sox factor binding depends on developmental stage-specific constraints and reveal a remarkable sequential binding of Sox proteins to a common set of neural genes. Interestingly, in ES cells, Sox2 preselects for neural lineage-specific genes destined to be bound and activated by Sox3 in NPCs. In NPCs, Sox3 binds genes that are later bound and activated by Sox11 in differentiating neurons. Genes prebound by Sox proteins are associated with a bivalent chromatin signature, which is resolved into a permissive monovalent state upon binding of activating Sox factors. These data indicate that a single key transcription factor family acts sequentially to coordinate neural gene expression from the early lineage specification in pluripotent cells to later stages of neuronal development.
Asunto(s)
Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica , Neuronas/citología , Factores de Transcripción SOX/genética , Animales , Línea Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Genoma , Ratones , Neurogénesis/genética , Neuronas/metabolismo , Células Madre Pluripotentes/metabolismo , Factores de Transcripción SOX/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXC/genética , Regulación hacia ArribaRESUMEN
OBJECTIVE: In anti-citrullinated protein antibody positive rheumatoid arthritis (ACPA-positive RA), a particular subset of HLA-DRB1 alleles, called shared epitope (SE) alleles, is a highly influential genetic risk factor. Here, we investigated whether non-HLA single nucleotide polymorphisms (SNP), conferring low disease risk on their own, interact with SE alleles more frequently than expected by chance and if such genetic interactions influence the HLA-DRB1 SE effect concerning risk to ACPA-positive RA. METHODS: We computed the attributable proportion (AP) due to additive interaction at genome-wide level for two independent ACPA-positive RA cohorts: the Swedish epidemiological investigation of rheumatoid arthritis (EIRA) and the North American rheumatoid arthritis consortium (NARAC). Then, we tested for differences in the AP p value distributions observed for two groups of SNPs, non-associated and associated with disease. We also evaluated whether the SNPs in interaction with HLA-DRB1 were cis-eQTLs in the SE alleles context in peripheral blood mononuclear cells from patients with ACPA-positive RA (SE-eQTLs). RESULTS: We found a strong enrichment of significant interactions (AP p<0.05) between the HLA-DRB1 SE alleles and the group of SNPs associated with ACPA-positive RA in both cohorts (Kolmogorov-Smirnov test D=0.35 for EIRA and D=0.25 for NARAC, p<2.2e-16 for both). Interestingly, 564 out of 1492 SNPs in consistent interaction for both cohorts were significant SE-eQTLs. Finally, we observed that the effect size of HLA-DRB1 SE alleles for disease decreases from 5.2 to 2.5 after removal of the risk alleles of the two top interacting SNPs (rs2476601 and rs10739581). CONCLUSION: Our data demonstrate that there are massive genetic interactions between the HLA-DRB1 SE alleles and non-HLA genetic variants in ACPA-positive RA.
Asunto(s)
Alelos , Artritis Reumatoide/genética , Epistasis Genética/genética , Predisposición Genética a la Enfermedad/genética , Cadenas HLA-DRB1/genética , Anticuerpos Antiproteína Citrulinada/genética , Anticuerpos Antiproteína Citrulinada/inmunología , Artritis Reumatoide/inmunología , Estudios de Cohortes , Epistasis Genética/inmunología , Epítopos/genética , Epítopos/inmunología , Femenino , Cadenas HLA-DRB1/inmunología , Humanos , Masculino , América del Norte , Polimorfismo de Nucleótido Simple , Factores de Riesgo , SueciaRESUMEN
Non-coding SNPs in the protein tyrosine phosphatase non-receptor type 2 (PTPN2) locus have been linked with several autoimmune diseases, including rheumatoid arthritis, type I diabetes, and inflammatory bowel disease. However, the functional consequences of these SNPs are poorly characterized. Herein, we show in blood cells that SNPs in the PTPN2 locus are highly correlated with DNA methylation levels at four CpG sites downstream of PTPN2 and expression levels of the long non-coding RNA (lncRNA) LINC01882 downstream of these CpG sites. We observed that LINC01882 is mainly expressed in T cells and that anti-CD3/CD28 activated naïve CD4+ T cells downregulate the expression of LINC01882. RNA sequencing analysis of LINC01882 knockdown in Jurkat T cells, using a combination of antisense oligonucleotides and RNA interference, revealed the upregulation of the transcription factor ZEB1 and kinase MAP2K4, both involved in IL-2 regulation. Overall, our data suggests the involvement of LINC01882 in T cell activation and hints towards an auxiliary role of these non-coding SNPs in autoimmunity associated with the PTPN2 locus.
Asunto(s)
Enfermedades Autoinmunes/genética , Linfocitos T CD4-Positivos/fisiología , Islas de CpG/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 2/genética , ARN Largo no Codificante/genética , Autoinmunidad/genética , Metilación de ADN , Técnicas de Silenciamiento del Gen , Humanos , Células Jurkat , Activación de Linfocitos , MAP Quinasa Quinasa 4/genética , Polimorfismo de Nucleótido Simple , ARN Interferente Pequeño/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genéticaRESUMEN
The clinical efficacy of B cell targeting therapies highlights the pathogenic potential of B cells in inflammatory diseases. Expression of Fc Receptor like 4 (FcRL4) identifies a memory B cell subset, which is enriched in the joints of patients with rheumatoid arthritis (RA) and in mucosa-associated lymphoid tissue. The high level of RANKL production by this B cell subset indicates a unique pathogenic role. In addition, recent work has identified a role for FcRL4 as an IgA receptor, suggesting a potential function in mucosal immunity. Here, the contribution of FcRL4+ B cells to the specific autoimmune response in the joints of patients with RA was investigated. Single FcRL4+ and FcRL4- B cells were sorted from synovial fluid and tissue from RA patients and their immunoglobulin genes characterized. Levels of hypermutation in the variable regions in both populations were largely consistent with memory B cells selected by an antigen- and T cell-dependent process. Recombinant antibodies were generated based on the IgH and IgL variable region sequences and investigated for antigen specificity. A significantly larger proportion of the recombinant antibodies generated from individual synovial FcRL4+ B cells showed reactivity towards citrullinated autoantigens. Furthermore, both in analyses based on heavy chain sequences and flow cytometric detection, FcRL4+ B cells have significantly increased usage of the IgA isotype. Their low level of expression of immunoglobulin and plasma cell differentiation genes does not suggest current antibody secretion. We conclude that these activated B cells are a component of the local autoimmune response, and through their RANKL expression, can contribute to joint destruction. Furthermore, their expression of FcRL4 and their enrichment in the IgA isotype points towards a potential role for these cells in the link between mucosal and joint inflammation.
Asunto(s)
Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Autoinmunidad/genética , Linfocitos B/inmunología , Linfocitos B/metabolismo , Expresión Génica , Receptores Fc/genética , Anciano , Artritis Reumatoide/diagnóstico , Artritis Reumatoide/metabolismo , Autoantígenos/inmunología , Biomarcadores , Femenino , Humanos , Isotipos de Inmunoglobulinas/genética , Isotipos de Inmunoglobulinas/inmunología , Inmunoglobulinas/genética , Inmunoglobulinas/inmunología , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Mutación , Líquido Sinovial/inmunología , Membrana Sinovial/inmunología , TranscriptomaRESUMEN
OBJECTIVE: In rheumatoid arthritis (RA) several recent efforts have sought to discover means of predicting which patients would benefit from treatment. However, results have been discrepant with few successful replications. Our objective was to build a biobank with DNA, RNA and protein measurements to test the claim that the current state-of-the-art precision medicine will benefit RA patients. METHODS: We collected 451 blood samples from 61 healthy individuals and 185 RA patients initiating treatment, before treatment initiation and at a 3 month follow-up time. All samples were subjected to high-throughput RNA sequencing, DNA genotyping, extensive proteomics and flow cytometry measurements, as well as comprehensive clinical phenotyping. Literature review identified 2 proteins, 52 single-nucleotide polymorphisms (SNPs) and 72 gene-expression biomarkers that had previously been proposed as predictors of TNF inhibitor response (∆DAS28-CRP). RESULTS: From these published TNFi biomarkers we found that 2 protein, 2 SNP and 8 mRNA biomarkers could be replicated in the 59 TNF initiating patients. Combining these replicated biomarkers into a single signature we found that we could explain 51% of the variation in ∆DAS28-CRP. This corresponds to a sensitivity of 0.73 and specificity of 0.78 for the prediction of three month ∆DAS28-CRP better than -1.2. CONCLUSIONS: The COMBINE biobank is currently the largest collection of multi-omics data from RA patients with high potential for discovery and replication. Taking advantage of this we surveyed the current state-of-the-art of drug-response stratification in RA, and identified a small set of previously published biomarkers available in peripheral blood which predicts clinical response to TNF blockade in this independent cohort.
RESUMEN
Developmental transcription factors important in early neuron specification and differentiation often remain expressed in the adult brain. However, how these transcription factors function to mantain appropriate neuronal identities in adult neurons and how transcription factor dysregulation may contribute to disease remain largely unknown. The transcription factor Nurr1 has been associated with Parkinson's disease and is essential for the development of ventral midbrain dopamine (DA) neurons. We used conditional Nurr1 gene-targeted mice in which Nurr1 is ablated selectively in mature DA neurons by treatment with tamoxifen. We show that Nurr1 ablation results in a progressive pathology associated with reduced striatal DA, impaired motor behaviors, and dystrophic axons and dendrites. We used laser-microdissected DA neurons for RNA extraction and next-generation mRNA sequencing to identify Nurr1-regulated genes. This analysis revealed that Nurr1 functions mainly in transcriptional activation to regulate a battery of genes expressed in DA neurons. Importantly, nuclear-encoded mitochondrial genes were identified as the major functional category of Nurr1-regulated target genes. These studies indicate that Nurr1 has a key function in sustaining high respiratory function in these cells, and that Nurr1 ablation in mice recapitulates early features of Parkinson's disease.
Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Animales , Conducta Animal , Núcleo Celular/genética , Dopamina/metabolismo , Neuronas Dopaminérgicas/ultraestructura , Expresión Génica , Genes Mitocondriales , Ratones , Ratones Noqueados , Ratones Transgénicos , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/deficiencia , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Corteza Visual/metabolismoRESUMEN
INTRODUCTION: Decoding transcriptional effects of experimental tissue-tissue or cell-cell interactions is important; for example, to better understand tumor-stroma interactions after transplantation of human cells into mouse (xenografting). Transcriptome analysis of intermixed human and mouse cells has, however, frequently relied on the need to separate the two cell populations prior to transcriptome analysis, which introduces confounding effects on gene expression. METHODS: To circumvent this problem, we here describe a bioinformatics-based, genome-wide transcriptome analysis technique, which allows the human and mouse transcriptomes to be decoded from a mixed mouse and human cell population. The technique is based on a bioinformatic separation of the mouse and human transcriptomes from the initial mixed-species transcriptome resulting from sequencing an excised tumor/stroma specimen without prior cell sorting. RESULTS: Under stringent separation criteria, i.e., with a read misassignment frequency of 0.2 %, we show that 99 % of the genes can successfully be assigned to be of mouse or human origin, both in silico, in cultured cells and in vivo. We use a new species-specific sequencing technology-referred to as S(3) ("S-cube")-to provide new insights into the Notch downstream response following Notch ligand-stimulation and to explore transcriptional changes following transplantation of two different breast cancer cell lines (luminal MCF7 and basal-type MDA-MB-231) into mammary fat pad tissue in mice of different immunological status. We find that MCF7 and MDA-MB-231 respond differently to fat pad xenografting and the stromal response to transplantation of MCF7 and MDA-MB-231 cells was also distinct. CONCLUSIONS: In conclusion, the data show that the S(3) technology allows for faithful recording of transcriptomic changes when human and mouse cells are intermixed and that it can be applied to address a broad spectrum of research questions.
Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Comunicación Celular , Células del Estroma/metabolismo , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Xenoinjertos , Humanos , Ligandos , Ratones , Receptores Notch/metabolismo , Transducción de Señal , Especificidad de la Especie , TranscriptomaRESUMEN
Analyses of transcriptional bursting from single-cell RNA-sequencing data have revealed patterns of variation and regulation in the kinetic parameters that could be inferred. Here we profiled newly transcribed (4-thiouridine-labelled) RNA across 10,000 individual primary mouse fibroblasts to more broadly infer bursting kinetics and coordination. We demonstrate that inference from new RNA profiles could separate the kinetic parameters that together specify the burst size, and that the synthesis rate (and not the transcriptional off rate) controls the burst size. Importantly, transcriptome-wide inference of transcriptional on and off rates provided conclusive evidence that RNA polymerase II transcribes genes in bursts. Recent reports identified examples of transcriptional co-bursting, yet no global analyses have been performed. The deep new RNA profiles we generated with allelic resolution demonstrated that co-bursting rarely appears more frequently than expected by chance, except for certain gene pairs, notably paralogues located in close genomic proximity. Altogether, new RNA single-cell profiling critically improves the inference of transcriptional bursting and provides strong evidence for independent transcriptional bursting of mammalian genes.
Asunto(s)
Fibroblastos , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Transcripción Genética , Animales , Análisis de la Célula Individual/métodos , Ratones , Fibroblastos/metabolismo , Análisis de Secuencia de ARN/métodos , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Transcriptoma/genética , Cinética , Ratones Endogámicos C57BL , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión GénicaRESUMEN
Neonatal hypoxia-ischemia (HI) is a major cause of perinatal death and long-term disabilities worldwide. Post-ischemic neuroinflammation plays a pivotal role in HI pathophysiology. In the present study, we investigated the temporal dynamics of microglia (CX3CR1GFP/+) and infiltrating macrophages (CCR2RFP/+) in the hippocampi of mice subjected to HI at postnatal day 9. Using inflammatory pathway and transcription factor (TF) analyses, we identified a distinct post-ischemic response in CCR2RFP/+ cells characterized by differential gene expression in sensome, homeostatic, matrisome, lipid metabolic, and inflammatory molecular signatures. Three days after injury, transcriptomic signatures of CX3CR1GFP/+ and CCR2RFP/+ cells isolated from hippocampi showed a partial convergence. Interestingly, microglia-specific genes in CX3CR1GFP/+ cells showed a sexual dimorphism, where expression returned to control levels in males but not in females during the experimental time frame. These results highlight the importance of further investigations on metabolic rewiring to pave the way for future interventions in asphyxiated neonates.
RESUMEN
Idiopathic inflammatory myopathies (IIM) are rare autoimmune systemic diseases characterized by muscle weakness and the presence of muscle-infiltrating T cells. IIM represent a clinical challenge due to heterogeneity of symptoms and variability of response to immunosuppressive treatment. Here, we performed in-depth single-cell sequencing on muscle-infiltrating T cells and peripheral blood memory T cells in six patients with recently diagnosed IIM. We identified tissue resident memory T-cell (TRM ) signatures including the expression of HOBIT, XCL1 and CXCR6 in the muscle biopsies of all patients with IIM. Clonally expanded T-cell clones were mainly found among cytotoxic and TRM implying their role in the disease pathogenesis. Finally, identical expanded T-cell clones persisting at follow-up in the muscle tissue of two patients suggest their involvement in disease chronicity. Our study reveals a muscle tissue resident memory T-cell signature in patients with IIM and a transcriptomic map to identify novel therapeutic targets in IIM.
Asunto(s)
Enfermedades Autoinmunes , Miositis , Humanos , Linfocitos T , Miositis/diagnóstico , Miositis/terapia , MúsculosRESUMEN
Understanding the genetic background of complex diseases requires the expansion of studies beyond univariate associations. Therefore, it is important to use interaction assessments of risk factors in order to discover whether, and how genetic risk variants act together on disease development. The principle of interaction analysis is to explore the magnitude of the combined effect of risk factors on disease causation. In this study, we use simulations to investigate different scenarios of causation to show how the magnitude of the effect of two risk factors interact. We mainly focus on the two most commonly used interaction models, the additive and multiplicative risk scales, since there is often confusion regarding their use and interpretation. Our results show that the combined effect is multiplicative when two risk factors are involved in the same chain of events, an interaction called synergism. Synergism is often described as a deviation from additivity, which is a broader term. Our results also confirm that it is often relevant to estimate additive effect relationships, because they correspond to independent risk factors at low disease prevalence. Importantly, we evaluate the threshold of more than two required risk factors for disease causation, called the multifactorial threshold model. We found a simple mathematical relationship (square root) between the threshold and an additive-to-multiplicative linear effect scale (AMLES), where 0 corresponds to an additive effect and 1 to a multiplicative. We propose AMLES as a metric that could be used to test different effects relationships at the same time, given that it can simultaneously reveal additive, multiplicative and intermediate risk effects relationships. Finally, the utility of our simulation study was demonstrated using real data by analyzing and interpreting gene-gene interaction odds ratios from a rheumatoid arthritis case-control cohort.
Asunto(s)
Artritis Reumatoide/epidemiología , Artritis Reumatoide/genética , Predisposición Genética a la Enfermedad/genética , Modelos Estadísticos , Polimorfismo de Nucleótido Simple , Alelos , Anticuerpos Antiproteína Citrulinada/metabolismo , Artritis Reumatoide/inmunología , Bases de Datos Genéticas , Europa (Continente)/epidemiología , Frecuencia de los Genes , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Cadenas HLA-DRB1/genética , Humanos , Proteína Tirosina Fosfatasa no Receptora Tipo 22/genética , Factores de RiesgoRESUMEN
The online encyclopedia Wikipedia has become one of the most important online references in the world and has a substantial and growing scientific content. A search of Google with many RNA-related keywords identifies a Wikipedia article as the top hit. We believe that the RNA community has an important and timely opportunity to maximize the content and quality of RNA information in Wikipedia. To this end, we have formed the RNA WikiProject (http://en.wikipedia.org/wiki/Wikipedia:WikiProject_RNA) as part of the larger Molecular and Cellular Biology WikiProject. We have created over 600 new Wikipedia articles describing families of noncoding RNAs based on the Rfam database, and invite the community to update, edit, and correct these articles. The Rfam database now redistributes this Wikipedia content as the primary textual annotation of its RNA families. Users can, therefore, for the first time, directly edit the content of one of the major RNA databases. We believe that this Wikipedia/Rfam link acts as a functioning model for incorporating community annotation into molecular biology databases.
Asunto(s)
Bases de Datos de Ácidos Nucleicos , ARN/genética , Sistemas de Administración de Bases de Datos , ARN/químicaRESUMEN
The parts of the genome transcribed by a cell or tissue reflect the biological processes and functions it carries out. We characterized the features of mammalian tissue transcriptomes at the gene level through analysis of RNA deep sequencing (RNA-Seq) data across human and mouse tissues and cell lines. We observed that roughly 8,000 protein-coding genes were ubiquitously expressed, contributing to around 75% of all mRNAs by message copy number in most tissues. These mRNAs encoded proteins that were often intracellular, and tended to be involved in metabolism, transcription, RNA processing or translation. In contrast, genes for secreted or plasma membrane proteins were generally expressed in only a subset of tissues. The distribution of expression levels was broad but fairly continuous: no support was found for the concept of distinct expression classes of genes. Expression estimates that included reads mapping to coding exons only correlated better with qRT-PCR data than estimates which also included 3' untranslated regions (UTRs). Muscle and liver had the least complex transcriptomes, in that they expressed predominantly ubiquitous genes and a large fraction of the transcripts came from a few highly expressed genes, whereas brain, kidney and testis expressed more complex transcriptomes with the vast majority of genes expressed and relatively small contributions from the most expressed genes. mRNAs expressed in brain had unusually long 3'UTRs, and mean 3'UTR length was higher for genes involved in development, morphogenesis and signal transduction, suggesting added complexity of UTR-based regulation for these genes. Our results support a model in which variable exterior components feed into a large, densely connected core composed of ubiquitously expressed intracellular proteins.
Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Línea Celular , Dosificación de Gen , Humanos , Ratones , Modelos Genéticos , Especificidad de Órganos , Transcripción GenéticaRESUMEN
Large-scale sequencing of RNA from individual cells can reveal patterns of gene, isoform and allelic expression across cell types and states1. However, current short-read single-cell RNA-sequencing methods have limited ability to count RNAs at allele and isoform resolution, and long-read sequencing techniques lack the depth required for large-scale applications across cells2,3. Here we introduce Smart-seq3, which combines full-length transcriptome coverage with a 5' unique molecular identifier RNA counting strategy that enables in silico reconstruction of thousands of RNA molecules per cell. Of the counted and reconstructed molecules, 60% could be directly assigned to allelic origin and 30-50% to specific isoforms, and we identified substantial differences in isoform usage in different mouse strains and human cell types. Smart-seq3 greatly increased sensitivity compared to Smart-seq2, typically detecting thousands more transcripts per cell. We expect that Smart-seq3 will enable large-scale characterization of cell types and states across tissues and organisms.