Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Bioorg Med Chem Lett ; 30(4): 126930, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31926786

RESUMEN

Glycogen synthase kinase-3 plays an essential role in multiple biochemical pathways in the cell, particularly in regards to energy regulation. As such, Glycogen synthase kinase-3 is an attractive target for pharmacological intervention in a variety of disease states, particularly non-insulin dependent diabetes mellitus. However, due to homology with other crucial kinases, such as the cyclin-dependent protein kinase CDC2, developing compounds that are both potent and selective is challenging. A novel series of derivatives of 5-nitro-N2-(2-(pyridine-2ylamino)ethyl)pyridine-2,6-diamine were synthesized and have been shown to potently inhibit glycogen synthase kinase-3 (GSK3). Potency in the low nanomolar range was obtained along with remarkable selectivity. The compounds activate glycogen synthase in insulin receptor-expressing CHO-IR cells and in primary rat hepatocytes, and have acceptable pharmacokinetics and pharmacodynamics to allow for oral dosing. The X-ray co-crystal structure of human GSK3-ß in complex with compound 2 is reported and provides insights into the structural determinants of the series responsible for its potency and selectivity.


Asunto(s)
Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Piridinas/química , Animales , Sitios de Unión , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Glucógeno Sintasa Quinasa 3/metabolismo , Semivida , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Concentración 50 Inhibidora , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacocinética , Estructura Terciaria de Proteína , Piridinas/metabolismo , Piridinas/farmacocinética , Ratas , Relación Estructura-Actividad
2.
Bioorg Med Chem Lett ; 28(19): 3197-3201, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30170943

RESUMEN

Utilizing the already described 3,4-bi-aryl pyridine series as a starting point, incorporation of a second ring system with a hydrogen bond donor and additional hydrophobic contacts yielded the azaindole series which exhibited potent, picomolar RSK2 inhibition and the most potent in vitro target modulation seen thus far for a RSK inhibitor. In the context of the more potent core, several changes at the phenol moiety were assessed to potentially find a tool molecule appropriate for in vivo evaluation.


Asunto(s)
Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Animales , Cromatografía Liquida , Diseño de Fármacos , Humanos , Espectrometría de Masas , Fenoles/farmacología , Inhibidores de Proteínas Quinasas/química , Espectroscopía de Protones por Resonancia Magnética , Relación Estructura-Actividad
4.
J Med Chem ; 67(7): 5259-5271, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38530741

RESUMEN

A series of activators of GCN2 (general control nonderepressible 2) kinase have been developed, leading to HC-7366, which has entered the clinic as an antitumor therapy. Optimization resulted in improved permeability compared to that of the original indazole hinge binding scaffold, while maintaining potency at GCN2 and selectivity over PERK (protein kinase RNA-like endoplasmic reticulum kinase). The improved ADME properties of this series led to robust in vivo compound exposure in both rats and mice, allowing HC-7366 to be dosed in xenograft models, demonstrating that activation of the GCN2 pathway by this compound leads to tumor growth inhibition.


Asunto(s)
Proteínas Serina-Treonina Quinasas , eIF-2 Quinasa , Humanos , Ratones , Ratas , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , eIF-2 Quinasa/metabolismo , Ratones Endogámicos C57BL , ARN , Retículo Endoplásmico/metabolismo
5.
7.
Nat Rev Chem ; 5(10): 726-749, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34426795

RESUMEN

An ever-increasing demand for novel antimicrobials to treat life-threatening infections caused by the global spread of multidrug-resistant bacterial pathogens stands in stark contrast to the current level of investment in their development, particularly in the fields of natural-product-derived and synthetic small molecules. New agents displaying innovative chemistry and modes of action are desperately needed worldwide to tackle the public health menace posed by antimicrobial resistance. Here, our consortium presents a strategic blueprint to substantially improve our ability to discover and develop new antibiotics. We propose both short-term and long-term solutions to overcome the most urgent limitations in the various sectors of research and funding, aiming to bridge the gap between academic, industrial and political stakeholders, and to unite interdisciplinary expertise in order to efficiently fuel the translational pipeline for the benefit of future generations.

8.
Nat Rev Chem ; 5(10): 726-749, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37118182

RESUMEN

An ever-increasing demand for novel antimicrobials to treat life-threatening infections caused by the global spread of multidrug-resistant bacterial pathogens stands in stark contrast to the current level of investment in their development, particularly in the fields of natural-product-derived and synthetic small molecules. New agents displaying innovative chemistry and modes of action are desperately needed worldwide to tackle the public health menace posed by antimicrobial resistance. Here, our consortium presents a strategic blueprint to substantially improve our ability to discover and develop new antibiotics. We propose both short-term and long-term solutions to overcome the most urgent limitations in the various sectors of research and funding, aiming to bridge the gap between academic, industrial and political stakeholders, and to unite interdisciplinary expertise in order to efficiently fuel the translational pipeline for the benefit of future generations.

9.
ACS Infect Dis ; 6(6): 1480-1489, 2020 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31402665

RESUMEN

LpxD, acyl-ACP-dependent N-acyltransferase, is the third enzyme of lipid A biosynthesis in Gram-negative bacteria. A recent probe-based screen identified several compounds, including 6359-0284 (compound 1), that inhibit the enzymatic activity of Escherichia coli (E. coli) LpxD. Here, we use these inhibitors to chemically validate LpxD as an attractive antibacterial target. We first found that compound 1 was oxidized in solution to the more stable aromatized tetrahydro-pyrazolo-quinolinone compound 1o. From the Escherichia coli strain deficient in efflux, we isolated a mutant that was less susceptible to compound 1o and had an lpxD missense mutation (Gly268Cys), supporting the cellular on-target activity. Using surface plasma resonance, we showed direct binding to E. coli LpxD for compound 1o and other reported LpxD inhibitors in vitro. Furthermore, we determined eight cocrystal structures of E. coli LpxD/inhibitor complexes. These costructures pinpointed the 4'-phosphopantetheine binding site as the common ligand binding hotspot, where hydrogen bonds to Gly269 and/or Gly287 were important for inhibitor binding. In addition, the LpxD/compound 1o costructure rationalized the reduced activity of compound 1o in the LpxDGly268Cys mutant. Moreover, we obtained the LpxD structure in complex with a previously reported LpxA/LpxD dual targeting peptide inhibitor, RJPXD33, providing structural rationale for the unique dual targeting properties of this peptide. Given that the active site residues of LpxD are conserved in multidrug resistant Enterobacteriaceae, this work paves the way for future LpxD drug discovery efforts combating these Gram-negative pathogens.


Asunto(s)
Aciltransferasas , Proteínas de Escherichia coli , Escherichia coli , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/genética , Sitios de Unión , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/antagonistas & inhibidores , Lípido A , Lipopolisacáridos
10.
J Med Chem ; 63(5): 2013-2027, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-31059256

RESUMEN

Direct pharmacological inhibition of RAS has remained elusive, and efforts to target CRAF have been challenging due to the complex nature of RAF signaling, downstream of activated RAS, and the poor overall kinase selectivity of putative RAF inhibitors. Herein, we describe 15 (LXH254, Aversa, R.; et al. Int. Patent WO2014151616A1, 2014), a selective B/C RAF inhibitor, which was developed by focusing on drug-like properties and selectivity. Our previous tool compound, 3 (RAF709; Nishiguchi, G. A.; et al. J. Med. Chem. 2017, 60, 4969), was potent, selective, efficacious, and well tolerated in preclinical models, but the high human intrinsic clearance precluded further development and prompted further investigation of close analogues. A structure-based approach led to a pyridine series with an alcohol side chain that could interact with the DFG loop and significantly improved cell potency. Further mitigation of human intrinsic clearance and time-dependent inhibition led to the discovery of 15. Due to its excellent properties, it was progressed through toxicology studies and is being tested in phase 1 clinical trials.


Asunto(s)
Antineoplásicos/química , Descubrimiento de Drogas/métodos , Mutación/genética , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Animales , Antineoplásicos/farmacología , Diseño de Fármacos , Descubrimiento de Drogas/tendencias , Humanos , Simulación del Acoplamiento Molecular/métodos , Simulación del Acoplamiento Molecular/tendencias , Mutación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
11.
Cancer Res ; 78(6): 1537-1548, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29343524

RESUMEN

Resistance to the RAF inhibitor vemurafenib arises commonly in melanomas driven by the activated BRAF oncogene. Here, we report antitumor properties of RAF709, a novel ATP-competitive kinase inhibitor with high potency and selectivity against RAF kinases. RAF709 exhibited a mode of RAF inhibition distinct from RAF monomer inhibitors such as vemurafenib, showing equal activity against both RAF monomers and dimers. As a result, RAF709 inhibited MAPK signaling activity in tumor models harboring either BRAFV600 alterations or mutant N- and KRAS-driven signaling, with minimal paradoxical activation of wild-type RAF. In cell lines and murine xenograft models, RAF709 demonstrated selective antitumor activity in tumor cells harboring BRAF or RAS mutations compared with cells with wild-type BRAF and RAS genes. RAF709 demonstrated a direct pharmacokinetic/pharmacodynamic relationship in in vivo tumor models harboring KRAS mutation. Furthermore, RAF709 elicited regression of primary human tumor-derived xenograft models with BRAF, NRAS, or KRAS mutations with excellent tolerability. Our results support further development of inhibitors like RAF709, which represents a next-generation RAF inhibitor with unique biochemical and cellular properties that enables antitumor activities in RAS-mutant tumors.Significance: In an effort to develop RAF inhibitors with the appropriate pharmacological properties to treat RAS mutant tumors, RAF709, a compound with potency, selectivity, and in vivo properties, was developed that will allow preclinical therapeutic hypothesis testing, but also provide an excellent probe to further unravel the complexities of RAF kinase signaling. Cancer Res; 78(6); 1537-48. ©2018 AACR.


Asunto(s)
2,2'-Dipiridil/análogos & derivados , Antineoplásicos/farmacología , Benzamidas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Quinasas raf/antagonistas & inhibidores , Proteínas ras/genética , 2,2'-Dipiridil/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Ratones Desnudos , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Multimerización de Proteína , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas raf/metabolismo
12.
J Med Chem ; 60(20): 8482-8514, 2017 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-29016121

RESUMEN

In an effort to identify new antidiabetic agents, we have discovered a novel family of (5-imidazol-2-yl-4-phenylpyrimidin-2-yl)[2-(2-pyridylamino)ethyl]amine analogues which are inhibitors of human glycogen synthase kinase 3 (GSK3). We developed efficient synthetic routes to explore a wide variety of substitution patterns and convergently access a diverse array of analogues. Compound 1 (CHIR-911, CT-99021, or CHIR-73911) emerged from an exploration of heterocycles at the C-5 position, phenyl groups at C-4, and a variety of differently substituted linker and aminopyridine moieties attached at the C-2 position. These compounds exhibited GSK3 IC50s in the low nanomolar range and excellent selectivity. They activate glycogen synthase in insulin receptor-expressing CHO-IR cells and primary rat hepatocytes. Evaluation of lead compounds 1 and 2 (CHIR-611 or CT-98014) in rodent models of type 2 diabetes revealed that single oral doses lowered hyperglycemia within 60 min, enhanced insulin-stimulated glucose transport, and improved glucose disposal without increasing insulin levels.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasas/antagonistas & inhibidores , Hipoglucemiantes/síntesis química , Hipoglucemiantes/farmacología , Pirimidinas/farmacología , Animales , Células CHO , Cromatografía Líquida de Alta Presión , Cricetulus , Cristalografía por Rayos X , Inhibidores Enzimáticos/metabolismo , Humanos , Hipoglucemiantes/metabolismo , Espectrometría de Masas , Espectroscopía de Protones por Resonancia Magnética , Pirimidinas/química , Pirimidinas/metabolismo , Ratas , Relación Estructura-Actividad
13.
J Med Chem ; 60(12): 4869-4881, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28557458

RESUMEN

RAS oncogenes have been implicated in >30% of human cancers, all representing high unmet medical need. The exquisite dependency on CRAF kinase in KRAS mutant tumors has been established in genetically engineered mouse models and human tumor cells. To date, many small molecule approaches are under investigation to target CRAF, yet kinase-selective and cellular potent inhibitors remain challenging to identify. Herein, we describe 14 (RAF709) [ Aversa , Biaryl amide compounds as kinase inhibitors and their preparation . WO 2014151616, 2014 ], a selective B/C RAF inhibitor, which was developed through a hypothesis-driven approach focusing on drug-like properties. A key challenge encountered in the medicinal chemistry campaign was maintaining a balance between good solubility and potent cellular activity (suppression of pMEK and proliferation) in KRAS mutant tumor cell lines. We investigated the small molecule crystal structure of lead molecule 7 and hypothesized that disruption of the crystal packing would improve solubility, which led to a change from N-methylpyridone to a tetrahydropyranyl oxy-pyridine derivative. 14 proved to be soluble, kinase selective, and efficacious in a KRAS mutant xenograft model.


Asunto(s)
2,2'-Dipiridil/análogos & derivados , Antineoplásicos/farmacología , Benzamidas/farmacología , Quinasas raf/antagonistas & inhibidores , Proteínas ras/genética , 2,2'-Dipiridil/química , 2,2'-Dipiridil/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Benzamidas/química , Cristalografía por Rayos X , Perros , Diseño de Fármacos , Descubrimiento de Drogas , Estabilidad de Medicamentos , Humanos , Concentración 50 Inhibidora , Ratones , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas p21(ras)/genética , Ratas , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
14.
PLoS One ; 12(4): e0174706, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28384226

RESUMEN

RAS mutations lead to a constitutively active oncogenic protein that signals through multiple effector pathways. In this chemical biology study, we describe a novel coupled biochemical assay that measures activation of the effector BRAF by prenylated KRASG12V in a lipid-dependent manner. Using this assay, we discovered compounds that block biochemical and cellular functions of KRASG12V with low single-digit micromolar potency. We characterized the structural basis for inhibition using NMR methods and showed that the compounds stabilized the inactive conformation of KRASG12V. Determination of the biophysical affinity of binding using biolayer interferometry demonstrated that the potency of inhibition matches the affinity of binding only when KRAS is in its native state, namely post-translationally modified and in a lipid environment. The assays we describe here provide a first-time alignment across biochemical, biophysical, and cellular KRAS assays through incorporation of key physiological factors regulating RAS biology, namely a negatively charged lipid environment and prenylation, into the in vitro assays. These assays and the ligands we discovered are valuable tools for further study of KRAS inhibition and drug discovery.


Asunto(s)
Lípidos/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Humanos , Espectroscopía de Resonancia Magnética , Prenilación
15.
J Med Chem ; 58(17): 6766-83, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26270416

RESUMEN

While the p90 ribosomal S6 kinase (RSK) family has been implicated in multiple tumor cell functions, the full understanding of this kinase family has been restricted by the lack of highly selective inhibitors. A bis-phenol pyrazole was identified from high-throughput screening as an inhibitor of the N-terminal kinase of RSK2. Structure-based drug design using crystallography, conformational analysis, and scaffold morphing resulted in highly optimized difluorophenol pyridine inhibitors of the RSK kinase family as demonstrated cellularly by the inhibition of YB1 phosphorylation. These compounds provide for the first time in vitro tools with an improved selectivity and potency profile to examine the importance of RSK signaling in cancer cells and to fully evaluate RSK as a therapeutic target.


Asunto(s)
Pirazoles/química , Piridinas/química , Pirimidinas/química , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Animales , Línea Celular , Cristalografía por Rayos X , Humanos , Masculino , Ratones , Modelos Moleculares , Fosforilación , Conformación Proteica , Pirazoles/síntesis química , Pirazoles/farmacología , Piridinas/síntesis química , Piridinas/farmacología , Pirimidinas/síntesis química , Pirimidinas/farmacología , Ratas Sprague-Dawley , Transducción de Señal , Relación Estructura-Actividad , Proteína 1 de Unión a la Caja Y/metabolismo
16.
ACS Med Chem Lett ; 6(1): 42-6, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25589928

RESUMEN

Compound 13 was discovered through morphing of the ATR biochemical HTS hit 1. The ABI series was potent and selective for ATR. Incorporation of a 6-azaindole afforded a marked increase in cellular potency but was associated with poor PK and hERG ion channel inhibition. DMPK experiments established that CYP P450 and AO metabolism in conjunction with Pgp and BCRP efflux were major causative mechanisms for the observed PK. The series also harbored the CYP3A4 TDI liability driven by the presence of both a morpholine and an indole moiety. Incorporation of an adjacent fluorine or nitrogen into the 6-azaindole addressed many of the various medicinal chemistry issues encountered.

17.
ACS Med Chem Lett ; 6(9): 961-5, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26396681

RESUMEN

Abrogation of errant signaling along the MAPK pathway through the inhibition of B-RAF kinase is a validated approach for the treatment of pathway-dependent cancers. We report the development of imidazo-benzimidazoles as potent B-RAF inhibitors. Robust in vivo efficacy coupled with correlating pharmacokinetic/pharmacodynamic (PKPD) and PD-efficacy relationships led to the identification of RAF265, 1, which has advanced into clinical trials.

18.
J Org Chem ; 61(12): 4120-4124, 1996 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-11667292

RESUMEN

Currently, the role of DNA-directed alkylating agents as potential anticancer/ antimicrobial drugs is of wide interest. Most of the alkylating agents used clinically as drugs damage DNA in cells without specificity, and this can lead to undesired toxicity problems. Minimizing serum residence time by targeting the drug to select pathogens or organs might diminish the effects of nonselective reactivity. This paper describes the syntheses and preliminary studies of analogs of siderophores (microbial iron chelators) 2 and 20 that incorporate centers within the siderophore framework capable of generating potent electrophiles (iminium ions), hopefully after directed cellular recognition and uptake. Formation of N-aminals from trimelamol (3) and substituted hydroxamic acid 4 or 5was critical for the design and synthesis of the targets. In preliminary biological testing, compound 2, a trimelamol-based siderophore analog, was active against Escherichia coli X580, illustrating the therapeutic potential of this new type of siderophore-mediated drug design and delivery.

19.
ACS Med Chem Lett ; 5(9): 989-92, 2014 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-25221654

RESUMEN

Benzimidazole reverse amides were designed and synthesized as Pan RAF kinase inhibitors. Investigation of the structure-activity relationship of the compounds revealed that they were potent in vitro and exhibited desirable in vivo properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA