Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 249: 118383, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331152

RESUMEN

Zonation is a typical pattern of soil distribution and species assembly across riparian habitats. Microorganisms are essential members of riparian ecosystems and whether soil microbial communities demonstrate similar zonation patterns and how bulk and rhizosphere soil microorganisms interact along the elevation (submergence stress) gradient remain largely unknown. In this study, bulk and rhizosphere (dominant plant) soil samples were collected and investigated across riparian zones where the submergence stress intensity increased as the elevation decreased. Results showed that the richness of bacterial communities in bulk and rhizosphere soil samples was significantly different and presented a zonation pattern along with the submergence stress gradient. Bulk soil at medium elevation that underwent moderate submergence stress had the most abundant bacterial communities, while the species richness of rhizobacteria at low elevation that experienced serious submergence stress was the highest. Additionally, principal coordinate analysis (PCoA) and significance tests showed that bulk and rhizosphere soil samples were distinguished according to the structure of bacterial communities, and so were bulk or rhizosphere soil samples from different elevations. Redundancy analysis (RDA) and Mantel test suggested that bacterial communities of bulk soil mainly relied on the contents of soil organic matter, total carbon (TC), total nitrogen (TN), sodium (Na), calcium (Ca) and magnesium (Mg). Contrastingly, the contents of Na and Mg were the main factors explaining the variation in rhizobacterial community composition. Correlation and microbial source tracking analyses showed thatthe relationship of bulk and rhizosphere soil bacteria became much stronger, and the rhizosphere soil may get more bacterial communities from bulk soil with the increase in submergence severity. Our results suggest that the abiotic and biotic components of the riparian ecosystem are closely covariant along the submergence stress gradient and imply that the bacterial community may be a key node linking soil physiochemical properties and vegetation communities.


Asunto(s)
Bacterias , Rizosfera , Microbiología del Suelo , China , Bacterias/clasificación , Ríos/microbiología , Ríos/química , Altitud , Microbiota , Suelo/química
2.
Environ Geochem Health ; 44(12): 4405-4422, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35089477

RESUMEN

Mercury (Hg) is extremely poisonous and can be absorbed through touch, inhalation, or consumption. In the living environment, Hg in contaminated sediment can be transferred into grass by the direct absorption through the roots or shoots. The intake of Hg due to Hg emissions may pose a threat to living bodies especially to human beings. The present study aims to provide a novel insight about total mercury (THg) and methyl mercury (MeHg) in a riparian grass (Cynodon dactylon (L).Pers) and sediments during the discharging phase (summertime at 145 m water level) in Three Gorges Reservoir (TGR-China); where C. dactylon is a dominant perennial herb in the riparian zone. Yet, the potential risk of Hg contamination in the riparian ecosystem is not thoroughly assessed in the dam regulated reservoir. This study was conducted in the riparian zones of the reservoir formed by a mega dam (Three Gorge Dam) which regulates the water levels during the summer and winter period in the TGR. Our results showed that riparian sediments were acting as a sink for THg and MeHg. Insignificant correlation of THg and MeHg was found between the amphiphyte C. dactylon and its surrounding sediments in the TGR. Bioconcentration factors values for MeHg were found higher than 1 in all study locations in the riparian zones in TGR, which could be due to action of certain bacteria/purely chemical-based methylation on inorganic form of Hg. Additionally, translocation factor indices also highlighted that the amphiphyte C. dactylon was MeHg accumulator in riparian zones. These results suggested that since riparian sediment was found acting as the sink for THg and MeHg during discharging phase, MeHg contamination in the amphiphyte C. dactylon in riparian zones was not caused by the riparian sediments but by other factors, for instance, the anthropogenic activities in the TGR. Finally, this study leads to conclude that amphiphyte C. dactylon can be used as biomonitoring agent for Hg pollution in the TGR.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Humanos , Mercurio/análisis , Ecosistema , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Agua
3.
Sci Total Environ ; 844: 157116, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35787904

RESUMEN

Understanding community assembly is a key issue in recognizing community succession and guiding the restoration of degraded ecosystems. Based on the stress-dominance hypothesis (SDH), along a gradient of increasing environmental stress, the relative importance of environmental filtering is supposed to be dominant but species interaction could be a minor process in assembling communities. However, this hypothesized model of the assembly-rule shift was equivocally supported by various studies. In this study, by examining riparian plant communities with the zonation distribution of species composition along a markedly contrast flooding-stress gradient, a general aim was to clarify whether assembly rules of the communities would be also sorted into the zonation pattern as expected by the SDH. Another aim was to identify how edaphic factors associate with the assembly processes. Firstly, we found that even under the distinct stress gradient, community assembly was not stratified into different rules as the SDH expected, but environmental filtering appeared as a dominant assembly process across the stress gradient. Secondly, although filtering holds as a dominant assembly rule, environmental filters were found different along the gradient. By disentangling the filters of edaphic attributes, we found that the filters significantly shifted from soil physical properties to chemical nutrients governing the filtering process along the gradient. This result revealed that, across the contrast gradient, the environmental deterministic process on assembly is so strong that the other assembly processes became weaker. By synthesizing our results, the SDH may not be applied even under the context of a contrast stress gradient, which suggests that environmental context may be a key in testing and applying the SDH. Finally, in guiding riparian restoration under strong stress, we suggest that soil physical structure rather than chemical nutrients shall be given a priority for consideration in rebuilding the degraded riparian communities.


Asunto(s)
Ecosistema , Suelo , Inundaciones , Plantas , Estrés Fisiológico
4.
Sci Total Environ ; 802: 149886, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34525683

RESUMEN

Hydropower dam constructions and operations have dramatically changed the original hydrological regime of natural rivers. Because of significantly slashed and suspended sediments blocked by damming, discharged "clear" water was found to play a strong undercutting effect on the riverbank and to exacerbate riparian soil erosion on the downstream near dams. Yet, it is still an unsettled issue whether the instability of riparian soil structure would be simply correlated negatively with the distance to a dam. In this study, soils along the downstream riparian zone of a huge dam on the River Yangtze, China, were sampled to examine the distance effect on the riparian soil structural stability. Water-stable aggregates were fractionated by the wet-sieving method. Mean weight diameter (MWD) and geometric mean diameter (GMD) were used to indicate riparian soil stability. Further, the fractal dimension (D) and soil erodibility parameter (K) were used to represent the likelihood of riparian erosion. Our results revealed that riparian soil structural stability demonstrated a high spatial heterogeneity along the River Yangtze, and was less affected by the spatial distance to the dam. Rather, the soil stability was primarily influenced by a river shape index (sinuosity) and local edaphic properties. The river sinuosity index demonstrated a positive relationship with soil structural stability. Additionally, soil organic matter was found as a major edaphic factor in stabilizing soil structure. The results indicated that river sinuosity plays a crucial role in stabilizing soil by accumulating soil organic matters. Our findings implied that the potential negative impact of damming effect on soil stability may be attenuated by maintaining a higher sinuosity of the river. Against the risk of riparian soil erosion along the dammed river, the configuration of river morphology shall be considered as one of the potential managements in offsetting the negative impacts of damming.


Asunto(s)
Ríos , Suelo , China , Hidrología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA