Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(17): 9646-9654, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37094217

RESUMEN

The specificity of ions in inducing conformational changes in macromolecules is introduced as the Hofmeister series; however, the detailed underlying mechanism is not comprehensible yet. We utilized surface-specific sum frequency generation (SFG) vibrational spectroscopy to explore the Hofmeister effect at the air/polyvinylpyrrolidone (PVP)/water interface. The spectral signature observed from the ssp polarization scheme reveals ion-specific ordering of water molecules following the Hofmeister series attributed to the ion-macromolecule interactions. Along with this, the presence of ions does not reflect any significant influence on the structure of the PVP macromolecule. However, the ppp-SFG spectra in the CH-stretch region reveal the impact of ions on the orientation angle of vinyl chain CH2-groups, which follows the Hofmeister series: SO42- > Cl- > NO3- > Br- > ClO4- > SCN-. The minimal orientation angle of CH2-groups indicates significant reordering in PVP vinyl chains in the presence of chaotropic anions ClO4-, and SCN-. The observation is attributed to the ion-specific water-macromolecule interactions at the air/aqueous interface. It is compelling to observe the signature of spectral blue shifts in the OH-stretch region in the ppp configuration in the presence of chaotropic anions. The origin of spectral blue shifts has been ascribed to the existence of weaker interactions between the interfacial water molecules and the backbone CH- and CH2-moieties of the PVP macromolecules. The ion-specific modulation in water-macromolecule interactions is endorsed by the relative propensity of anion's adsorption toward the air/aqueous interface. The experimental findings highlight the existence and cooperative participation of ion-specific water-macromolecule interactions in the mechanism of the Hofmeister effect, along with the illustrious ion-water and ion-macromolecule interactions.

2.
J Am Chem Soc ; 144(39): 17832-17840, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36131621

RESUMEN

Evaporation is an interfacial phenomenon in which a water molecule breaks the intermolecular hydrogen (H-) bonds and enters the vapor phase. However, a detailed demonstration of the role of interfacial water structure in the evaporation process is still lacking. Here, we purposefully perturb the H-bonding environment at the air/water interface by introducing kosmotropic (HPO4-2, SO4-2, and CO3-2) and chaotropic ions (NO3- and I-) to determine their influence on the evaporation process. Using time-resolved interferometry on aqueous salt droplets, we found that kosmotropes reduce evaporation, whereas chaotropes accelerate the evaporation process, following the Hofmeister series: HPO4-2 < SO4-2 < CO3-2 < Cl- < NO3- < I-. To extract deeper molecular-level insights into the observed Hofmeister trend in the evaporation rates, we investigated the air/water interface in the presence of ions using surface-specific sum frequency generation (SFG) vibrational spectroscopy. The SFG vibrational spectra reveal the significant impact of ions on the strength of the H-bonding environment and the orientation of free OH oscillators from ∼36.2 to 48.4° at the air/water interface, where both the effects follow the Hofmeister series. It is established that the slow evaporating water molecules experience a strong H-bonding environment with free OH oscillators tilted away from the surface normal in the presence of kosmotropes. In contrast, the fast evaporating water molecules experience a weak H-bonding environment with free OH oscillators tilted toward the surface normal in the presence of chaotropes at the air/water interface. Our experimental outcomes showcase the complex bonding environment of interfacial water molecules and their decisive role in the evaporation process.


Asunto(s)
Vibración , Agua , Hidrógeno , Iones/química , Análisis Espectral , Agua/química
3.
Langmuir ; 38(44): 13456-13468, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36279506

RESUMEN

The structural properties of the polyethylenimine (PEI) polymer are generally tuned and selectively modified to reinforce its potential in a broad spectrum of applied domains of medicine, healthcare, material design, sensing, and electronic optimization. The selective modification of the polymer brings about changes in its interfacial characteristics and behavior. The current work involves the synthesis of naphthalimide conjugated polyethylenimine organic nanoparticles (NPEI-ONPs). The interfacial molecular structure of NPEI-ONPs is explored in an aqueous medium at pH 7.4 using surface tensiometry and sum-frequency generation vibrational spectroscopy (SFG-VS). The hydrophobic functionalization rendered a concentration-dependent surface coverage of NPEI-ONPs, where the SFG-VS analysis exhibited the molecular rearrangement of its hydrophobic groups at the interface. The interaction of NPEI-ONPs with double-stranded DNA (dsDNA) is carried out to observe the relevance of the synthesized nanocomposites in the biomedical domain. The bulk-specific studies (i.e., thermal denaturation, viscometry, zeta (ζ) potential, and ATR-FTIR) reveal the condensation of dsDNA in the presence of NPEI-ONPs, making its structure more compact. The interface-sensitive SFG-VS showcased the impact of the dsDNA and NPEI-ONP interaction on the interfacial molecular behavior of NPEI-ONPs at the air-aqueous interface. Our results exhibit the potential of such hydrophobically functionalized ONPs as promising candidates for developing biomedical sealants, substrate coatings, and other biomedical domains.


Asunto(s)
Nanopartículas , Polietileneimina , Polietileneimina/química , Estructura Molecular , Nanopartículas/química , Polímeros/química , ADN , Agua
4.
J Chem Phys ; 152(11): 114707, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32199441

RESUMEN

Attenuated total reflectance Fourier transform infrared spectroscopy and sum frequency generation (SFG) vibrational spectroscopy have been employed to probe the molecular structure of N,N-dimethylformamide (DMF) and water mixture by varying the concentration of DMF. From the bulk studies, we observed a gradual decrease in the intensity with a continuous blue shift in the OH-stretch region with the increase in the DMF concentration. In contrast, no significant blue shift in the OH-stretch region is noticed from the SFG spectra collected from the air-aqueous binary mixture interface as a function of DMF concentration. However, the impact of DMF is found to be disruptive in nature toward the existing hydrogen bonding network of the pristine water at the interfacial region. Interestingly, in the CH-stretch region, the vibrational signatures of the DMF molecule show blue shifts, as proposed in earlier studies. We have calculated the molecular tilt angle of the methyl group of the DMF molecule as a function of DMF concentration. For the case of neat DMF, the observed tilt angle is ∼17.7° with respect to the surface normal. The value of tilt angle decreases with the decrease in DMF concentration and reaches a value of ∼1.7° for a mole fraction of 0.5, and it further increases with the decrease in DMF concentration. It achieves a value of ∼20° for the dilute DMF mole fraction of 0.05 in the binary mixture. This indicates that DMF molecules at the air-binary mixture interface are placing their methyl groups more toward the normal for the intermediate DMF concentrations.

5.
J Phys Condens Matter ; 36(10)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-37988750

RESUMEN

The change induced in the physicochemical properties of polymer while hosting ions provides a platform for studying its potential applications in electrochemical devices, water treatment plants, and materials engineering science. The ability to host ions is limited in very few polymers, which lack a detailed molecular-level understanding for showcasing the polymer-ion linkage behavior at the interfacial region. In the present manuscript, we have employed sum frequency generation (SFG) vibrational spectroscopy to investigate the interfacial structure of a new class phosphazene-based methoxyethoxyethoxyphosphazene (MEEP) polymer in the presence of lithium chloride salt at the air-aqueous interface. The interfacial aspects of the molecular system collected through SFG spectral signatures reveal enhanced water ordering and relative hydrogen bonding strength at the air-aqueous interface. The careful observation of the study finds a synchronous contribution of van der Waals and electrostatic forces in facilitating changes in the interfacial water structure that are susceptible to MEEP concentration in the presence of ions. The observation indicates that dilute MEEP concentrations support the role of electrostatic interaction, leading to an ordered water structure in proximity to diffused ions at the interfacial region. Conversely, higher MEEP concentrations promote the dominance of van der Waals interactions at the air-aqueous interface. Our study highlights the establishment of polymer electrolyte (PE) characteristics mediated by intermolecular interactions, as observed through the spectral signatures witnessed at the air-aqueous interface. The investigation illustrates the polymer-ion linkage adsorption effects at the interfacial region, which explains the macroscopic changes observed from the cyclic voltammetry studies. The fundamental findings from our studies can be helpful in the design and fine-tuning of better PE systems that can offer improved hydrophobic membranes and interface stability for use in electrochemical-based power sources.

6.
Appl Spectrosc ; 75(12): 1497-1509, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34346774

RESUMEN

*These authors contributed equally to this work.The molecular-level insight of protein adsorption and its kinetics at interfaces is crucial because of its multifold role in diverse fundamental biological processes and applications. In the present study, the sum frequency generation (SFG) vibrational spectroscopy has been employed to demonstrate the adsorption process of bovine hemoglobin (BHb) protein molecules at the air-water interface at interfacial isoelectric point of the protein. It has been observed that surface coverage of BHb molecules significantly influences the arrangement of the protein molecules at the interface. The time-dependent SFG studies at two different frequencies in the fingerprint region elucidate the kinetics of protein denaturation process and its influence on the hydrogen-bonding network of interfacial water molecules at the air-water interface. The initial growth kinetics suggests the synchronized behavior of protein adsorption process with the structural changes in the interfacial water molecules. Interestingly, both the events carry similar characteristic time constants. However, the conformational changes in the protein structure due to the denaturation process stay for a long time, whereas the changes in water structure reconcile quickly. It is revealed that the protein denaturation process is followed by the advent of strongly hydrogen-bonded water molecules at the interface. In addition, we have also carried out the surface tension kinetics measurements to complement the findings of our SFG spectroscopic results.


Asunto(s)
Hemoglobinas , Agua , Adsorción , Animales , Bovinos , Enlace de Hidrógeno , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA