RESUMEN
BACKGROUND: The review focuses on the bacteria associated with the human eye using the dual approach of detecting cultivable bacteria and the total microbiome using next generation sequencing. The purpose of this review was to highlight the connection between antimicrobial resistance and biofilm formation in ocular bacteria. METHODS: Pubmed was used as the source to catalogue culturable bacteria and ocular microbiomes associated with the normal eyes and those with ocular diseases, to ascertain the emergence of anti-microbial resistance with special reference to biofilm formation. RESULTS: This review highlights the genetic strategies used by microorganisms to evade the lethal effects of anti-microbial agents by tracing the connections between candidate genes and biofilm formation. CONCLUSION: The eye has its own microbiome which needs to be extensively studied under different physiological conditions; data on eye microbiomes of people from different ethnicities, geographical regions etc. are also needed to understand how these microbiomes affect ocular health.
Asunto(s)
Fenómenos Fisiológicos Bacterianos , Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana , Ojo/microbiología , Microbiota/fisiología , Infecciones Bacterianas del Ojo/microbiología , HumanosRESUMEN
Biofilms confer several advantages to the organisms associated with them, such as increased resistances to antibacterial and antifungal compounds compared to free living cells. Compared to monomicrobial biofilms involving a single microorganism, biofilms composed of microorganisms affiliated to bacterial and fungal kingdoms are predominant in nature. Despite the predominance of polymicrobial biofilms, and more so mixed polymicrobial biofilms, they are rarely studied. The objective of the current study is to evaluate the potential of ocular bacteria and a filamentous fungus to form monomicrobial and mixed polymicrobial biofilms on synthetic and natural substrates and to monitor their response to antibiotics. In this sense, we demonstrated that the ocular pathogens Staphylococcus aureus, S. epidermidis, and Fusarium solani form monomicrobial and mixed polymicrobial biofilms both on tissue culture polystyrene plates and on ex vivo human corneas from cadavers using confocal microscopy and scanning electron microscopy. Additionally, the mixed polymicrobial biofilms involving the above ocular bacteria and a filamentous fungus were less susceptible to different antibacterials and antifungals in relation to the corresponding control planktonic cells. Further, the MICs to the screened antibacterials and antifungals in polymicrobial biofilms involving a bacterium or a fungus was either increased, decreased, or unchanged compared to the corresponding individual bacterial or fungal biofilm. The results would be useful to the ophthalmologist to plan effective treatment regimens for the eye since these are common pathogens of the eye causing keratitis, endophthalmitis, conjunctivitis, etc.
RESUMEN
Microbes residing in biofilms confer several fold higher antimicrobial resistances than their planktonic counterparts. Compared to monomicrobial biofilms, polymicrobial biofilms involving multiple bacteria, multiple fungi or both are more dominant in nature. Paradoxically, polymicrobial biofilms are less studied. In this study, ocular isolates of Staphylococcus aureus, S. epidermidis and Candida albicans, the etiological agents of several ocular infections, were used to demonstrate their potential to form mono- and polymicrobial biofilms both in vitro and on human cadaveric corneas. Quantitative (crystal violet and XTT methods) and qualitative (confocal and scanning electron microscopy) methods demonstrated that they form polymicrobial biofilms. The extent of biofilm formation was dependent on whether bacteria and fungi were incubated simultaneously or added to a preformed biofilm. Additionally, the polymicrobial biofilms exhibited increased resistance to different antimicrobials compared to planktonic cells. When the MBECs of different antibacterial and antifungal agents were monitored it was observed that the MBECs in the polymicrobial biofilms was either identical or decreased compared to the monomicrobial biofilms. The results are relevant in planning treatment strategies for the eye. This study demonstrates that ocular bacteria and fungi form polymicrobial biofilms and exhibit increase in antimicrobial resistance compared to the planktonic cells.
Asunto(s)
Antiinfecciosos , Biopelículas , Candida albicans , Córnea , Humanos , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus , Staphylococcus epidermidisRESUMEN
Purpose: To describe the clinical characteristics and histopathological features in a rabbit model of Pythium insidiosum keratitis.Methods: Zoospores of P. insidiosum isolated from a patient with microbial keratitis were used for inoculation of the right eye of 48 New Zealand White rabbits in either low (LD) or high dose (HD). Apart from variable dosage the rabbits were grouped (6 rabbits per group) based on route of inoculation (topical on abraded cornea or intracorneal) and immunosuppression (subconjunctival steroid or no steroid). Left eye received phosphate buffered saline via route similar to the right eye. Daily clinical examination of the eye was done, the corneas were harvested on day 3, 7 and 9 and part of the cornea was preserved in 10% neutral buffered formalin for histopathological examination.Results: Left eye of all rabbits were clinically normal. Eyes with intracorneal injection of zoospores developed infection irrespective of dose of inoculation and administration of steroids. One of the consistent early signs of infection was ring like infiltrate in the peripheral cornea. On day 2, rabbits receiving HD developed significantly greater inflammation compared to LD [median clinical score in HD- 11 (IQR = 10-12), versus 9 (IQR = 8-9) in LD (p = 0.004)]. The density of inflammation showed temporal correlation (increase with time) when the inoculum was low. Of the rabbits that received topical inoculation one rabbit cornea showed mild infiltrate in steroid group while no eye was infected in the group without steroid. Sparsely septate to aseptate branching filaments were noted in the stroma of all infected corneas.Conclusions: We describe the first animal model of Pythium keratitis that holds promise for future studies. While topical inoculation of zoospores was unsuccessful in causing infection intracorneal inoculation without immunosuppression was sufficient to develop clinically severe keratitis in rabbits.
Asunto(s)
Úlcera de la Córnea/patología , Modelos Animales de Enfermedad , Infecciones Parasitarias del Ojo/patología , Pitiosis/patología , Pythium/aislamiento & purificación , Animales , Córnea/parasitología , Úlcera de la Córnea/diagnóstico , Infecciones Parasitarias del Ojo/diagnóstico , Pitiosis/diagnóstico , Conejos , Microscopía con Lámpara de Hendidura , Cuerpo Vítreo/parasitologíaRESUMEN
Escherichia coli is a predominant bacterium in the intestinal tracts of animals. Phylogenetically, strains have been classified into seven phylogroups, A, B1, B2, C, D, E, and F. Pathogenic strains have been categorized into several pathotypes such as Enteropathogenic (EPEC), Enterotoxigenic (ETEC), Enteroinvasive (EIEC), Enteroaggregative (EAEC), Diffusely adherent (DAEC), Uropathogenic (UPEC), Shiga-toxin producing (STEC) or Enterohemorrhagic (EHEC) and Extra-intestinal pathogenic E. coli (ExPEC). E. coli also survives as a commensal on the ocular surface. However, under conditions of trauma and immune-compromised states, E. coli causes conjunctivitis, keratitis, endopthalmitis, dacyrocystitis, etc. The phylogenetic affiliation and the pathotype status of these ocular E. coli strains is not known. For this purpose, the whole-genome sequencing of the 10 ocular E. coli strains was accomplished. Based on whole-genome SNP variation, the ocular E. coli strains were assigned to phylogenetic groups A (two isolates), B2 (seven isolates), and C (one isolate). Furthermore, results indicated that ocular E. coli originated either from feces (enteropathogenic and enterotoxigenic), urine (uropathogenic), or from extra-intestinal sources (extra-intestinal pathogenic). A high concordance was observed between the presence of AMR (Antimicrobial Resistance) genes and antibiotic resistance in the ocular E. coli strains. Furthermore, several virulent genes (fimB to fimI, papB to papX, etc.) and prophages (Enterobacteria phage HK97, Enterobacteria phage P1, Escherichia phage D108 etc.) were unique to ocular E. coli. This is the first report on a whole-genome analysis of ocular E. coli strains.
RESUMEN
Purpose: To determine the presence of herpes simplex virus and varicella zoster virus (HSV 1 and 2, VZV) in the cornea of normal subjects by multiplex real time quantitative (qPCR) assay and evaluate its utility in the diagnosis of viral keratitis. Methods: Corneal epithelial cells from 33 eyes of 22 patients undergoing photorefractive keratectomy surgery (controls) and 50 corneal scrapings from 50 patients with suspected HSV keratitis were analyzed for the presence of HSV1 by conventional PCR and for presence of HSV1 and 2 and/or VZV by multiplex real-time PCR. Corneal scrapings of patients were also tested for HSV1 antigen by immunofluorescence assay (IFA). The results were compared and clinical records reviewed. Results: HSV1 and VZV DNA were detected in 8/33 controls (mean-14.3 ± 7.96, range: 3-29.1 copies/mL) and 2/33 controls (mean-10.7 ± 10.9, range 3-18.5 copies/ml) respectively. HSV2 was not detected in any of the controls. Copy numbers above the mean + 1SD of controls were considered significant for viral load in patient samples. Significantly higher number of corneal scrapings (39/50, 78%) from patients were positive for HSV1 (1.2 × 106 copies/mL ± 3.7 × 106 copies/mL) by real time qPCR compared to IFA (11/48, 23%, P value 0.0001) and conventional PCR (20/50, 40%, P value 0.0002). Double infection with HSV-1 (1.5 × 107 copies/ml) and HSV-2 (3.57 × 104 copies/ml) in one case and VZV infection (1.03 × 102 copies/ml) in another was also detected by the multiplex real-time PCR. Conclusion: Multiplex real-time PCR reliably detects HSV1 and 2 and VZV DNA and is ideal for the diagnosis of HSV and VZV keratitis in an ocular microbiology laboratory.
Asunto(s)
Infecciones Virales del Ojo/diagnóstico , Herpesvirus Humano 1/genética , Herpesvirus Humano 2/genética , Herpesvirus Humano 3/genética , Queratitis Herpética/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Infección por el Virus de la Varicela-Zóster/diagnóstico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Córnea/patología , Córnea/virología , ADN Viral/análisis , Infecciones Virales del Ojo/epidemiología , Infecciones Virales del Ojo/virología , Femenino , Estudios de Seguimiento , Herpes Simple/diagnóstico , Herpes Simple/epidemiología , Herpes Simple/virología , Humanos , India/epidemiología , Lactante , Queratitis Herpética/epidemiología , Queratitis Herpética/virología , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Infección por el Virus de la Varicela-Zóster/epidemiología , Infección por el Virus de la Varicela-Zóster/virología , Adulto JovenRESUMEN
The present work is an attempt to establish the functionality of genes involved in biofilm formation and antibiotic resistance in an ocular strain of Escherichia coli (L-1216/2010) which was isolated and characterized from the Vitreous fluid of a patient with Endophthalmitis. For this purpose, seven separate gene-specific knockout mutants were generated by homologous recombination in ocular E. coli. The genes that were mutated included three transmembrane genes ytfR (ABC transporter ATP-binding protein), mdtO (multidrug efflux system) and tolA (inner membrane protein), ryfA coding for non-coding RNA and three metabolic genes mhpA (3-3-hydroxyphenylpropionate 1,2-dioxygenase), mhpB (2,3-di hydroxyphenylpropionate 1,2-dioxygenase), and bdcR (regulatory gene of bdcA). Mutants were validated by sequencing and Reverse transcription-PCR and monitored for biofilm formation by XTT method and confocal microscopy. The antibiotic susceptibility of the mutants was also ascertained. The results indicated that biofilm formation was inhibited in five mutants (ΔbdcR, ΔmhpA, ΔmhpB, ΔryfA, and ΔtolA) and the thickness of biofilm reduced from 17.2 µm in the wildtype to 1.5 to 4.8 µm in the mutants. Mutants ΔytfR and ΔmdtO retained the potential to form biofilm. Complementation of the mutants with the wild type gene restored biofilm formation potential in all mutants except in ΔmhpB. The 5 mutants which lost their ability to form biofilm (ΔbdcR, ΔmhpA, ΔmhpB, ΔtolA, and ΔryfA) did not exhibit any change in their susceptibility to Ceftazidime, Cefuroxime, Ciprofloxacin, Gentamicin, Cefotaxime, Sulfamethoxazole, Imipenem, Erythromycin, and Streptomycin in the planktonic phase compared to wild type ocular E. coli. But ΔmdtO was the only mutant with altered MIC to Sulfamethoxazole, Imipenem, Erythromycin, and Streptomycin both in the planktonic and biofilm phase. This is the first report demonstrating the involvement of the metabolic genes mhpA and mhpB and bdcR (regulatory gene of bdcA) in biofilm formation in ocular E. coli. In addition we provide evidence that tolA and ryfA are required for biofilm formation while ytfR and mdtO are not required. Mitigation of biofilm formation to overcome antibiotic resistance could be achieved by targeting the genes bdcR, mhpA, mhpB, ryfA, and tolA.
RESUMEN
[This corrects the article DOI: 10.1371/journal.pone.0199640.].
RESUMEN
Purpose: To study antibiotic susceptibility and biofilm-forming potential of ocular isolates of Candida albicans along with gene expression. Methods: Seven clinical isolates of C. albicans (keratitis-6 and orbital cellulitis-1) were evaluated. Biofilm formation in one isolate was monitored by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Expression of 27 genes (real-time PCR) associated with biofilm formation and virulence was compared between biofilm-positive and biofilm-negative ocular C. albicans isolates. The temporal expression (4 to 72 hours) of the 27 overexpressed genes was also determined. Similar studies were also done with biofilm-positive and biofilm-negative nonocular C. albicans. Results: Four of seven ocular C. albicans isolates exhibited the potential to form biofilm, one of which was resistant to three antifungals, whereas three were susceptible to all. SEM studies indicated that biofilm increased from two to three adherent layers of cells at 24 hours to multiple layers by 72 hours. CLSM showed that biofilm thickness increased from 5.2 µm at 24 hours to 17.98 µm at 72 hours. Upregulation of 27 genes involved in virulence and biofilm formation was observed both in the ocular and nonocular C. albicans positive for biofilm formation and compared to the respective non-biofilm-forming C. albicans. The results also indicated similarity in expression of genes between biofilm-forming ocular and nonocular pathogenic C. albicans. Temporal expression of the 27 genes (involved in adhesion, initiation, maturation, and dispersal stages of biofilm) in the biofilm-positive ocular isolate indicated that expression pattern followed four different patterns. Conclusions: This is the first study showing similarity in expression of genes in biofilm-forming ocular and nonocular isolates of C. albicans, suggesting that upregulated genes could serve as a potential target for developing therapeutic strategies.
Asunto(s)
Biopelículas , Candida albicans/fisiología , Infecciones Fúngicas del Ojo/microbiología , Regulación Fúngica de la Expresión Génica/fisiología , Genes Fúngicos/genética , Queratitis/microbiología , Celulitis Orbitaria/microbiología , Antifúngicos/farmacología , Candida albicans/aislamiento & purificación , Candida albicans/ultraestructura , Candidiasis/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Microscopía Confocal , Microscopía Electrónica de Rastreo , Reacción en Cadena en Tiempo Real de la PolimerasaRESUMEN
Dysbiosis in the gut microbiome has been implicated in several diseases including auto-immune diseases, inflammatory diseases, cancers and mental disorders. Keratitis is an inflammatory disease of the eye significantly contributing to corneal blindness in the developing world. It would be worthwhile to investigate the possibility of dysbiosis in the gut microbiome being associated with Keratitis. Here, we have analyzed fungal and bacterial populations in stool samples through high-throughput sequencing of the ITS2 region for fungi and V3-V4 region of 16S rRNA gene for bacteria in healthy controls (HC, n = 31) and patients with fungal keratitis (FK, n = 32). Candida albicans (2 OTUs), Aspergillus (1 OTU) and 3 other denovo-OTUs were enriched in FK samples and an unclassified denovo-OTU was enriched in HC samples. However, the overall abundances of these 'discriminatory' OTUs were very low (< 0.001%) and not indicative of significant dysbiosis in the fungal community inhabiting the gut of FK patients. In contrast, the gut bacterial richness and diversity in FK patients was significantly decreased when compared to HC. 52 OTUs were significantly enriched in HC samples whereas only 5 OTUs in FK. The OTUs prominently enriched in HC were identified as Faecalibacterium prausnitzii, Bifidobacterium adolescentis, Lachnospira, Mitsuokella multacida, Bacteroides plebeius, Megasphaera and Lachnospiraceae. In FK samples, 5 OTUs affiliated to Bacteroides fragilis, Dorea, Treponema, Fusobacteriaceae, and Acidimicrobiales were significantly higher in abundance. The functional implications are that Faecalibacterium prausnitzii, an anti-inflammatory bacterium and Megasphaera, Mitsuokella multacida and Lachnospira are butyrate producers, which were enriched in HC patients, whereas Treponema and Bacteroides fragilis, which are pathogenic were abundant in FK patients, playing a potential pro-inflammatory role. Heatmap, PCoA plots and functional profiles further confirm the distinct patterns of gut bacterial composition in FK and HC samples. Our study demonstrates dysbiosis in the gut bacterial microbiomes of FK patients compared to HC. Further, based on inferred functions, it appears that dysbiosis in the gut of FK subjects is strongly associated with the disease phenotype with decrease in abundance of beneficial bacteria and increase in abundance of pro-inflammatory and pathogenic bacteria.
Asunto(s)
Microbioma Gastrointestinal , Queratitis/microbiología , Micosis/microbiología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Heces/microbiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Adulto JovenRESUMEN
BACKGROUND: Escherichia coli, the gastrointestinal commensal, is also known to cause ocular infections such as conjunctivitis, keratitis and endophthalmitis. These infections are normally resolved by topical application of an appropriate antibiotic. But, at times these E. coli are resistant to the antibiotic and this could be due to formation of a biofilm. In this study ocular E. coli from patients with conjunctivitis, keratitis or endophthalmitis were screened for their antibiotic susceptibility and biofilm formation potential. In addition DNA-microarray analysis was done to identify genes that are involved in biofilm formation and antibiotic resistance. RESULTS: Out of 12 ocular E. coli isolated from patients ten isolates were resistant to one or more of the nine antibiotics tested and majority of the isolates were positive for biofilm formation. In E. coli L-1216/2010, the best biofilm forming isolate, biofilm formation was confirmed by scanning electron microscopy. Confocal laser scanning microscopic studies indicated that the thickness of the biofilm increased up to 72 h of growth. Further, in the biofilm phase, E. coli L-1216/2010 was 100 times more resistant to the eight antibiotics tested compared to planktonic phase. DNA microarray analysis indicated that in biofilm forming E. coli L-1216/2010 genes encoding biofilm formation such as cell adhesion genes, LPS production genes, genes required for biofilm architecture and extracellular matrix remodeling and genes encoding for proteins that are integral to the cell membrane and those that influence antigen presentation are up regulated during biofilm formation. In addition genes that confer antimicrobial resistance such as genes encoding antimicrobial efflux (mdtM and cycA), virulence (insQ, yjgK), toxin production (sat, yjgK, chpS, chpB and ygjN), transport of amino-acids and other metabolites (cbrB, cbrC, hisI and mglB) are also up regulated. These genes could serve as potential targets for developing strategies for hacking biofilms and overcoming antibiotic resistance. CONCLUSIONS: This is the first study on global gene expression in antibiotic resistant ocular E. coli with a potential to form biofilm. Using native ocular isolates for antibiotic susceptibility testing, for biofilm formation and global gene expression is relevant and more acceptable than using type strains or non clinical strains which do not necessarily mimic the native isolate.
RESUMEN
Purpose: To determine the type of Candida species in ocular infections and to investigate the relationship of antifungal susceptibility profile to virulence factors. Methods: Fifty isolates of yeast-like fungi from patients with keratitis, endophthalmitis, and orbital cellulitis were identified by Vitek-2 compact system and DNA sequencing of ITS1-5.8S-ITS2 regions of the rRNA gene, followed by phylogenetic analysis for phenotypic and genotypic identification, respectively. Minimum inhibitory concentration of six antifungal drugs was determined by E test/microbroth dilution methods. Phenotypic and genotypic methods were used to determine the virulence factors. Results: Phylogenetic analysis showed the clustering of all isolates into eight distinct groups with a major cluster formed Candida parapsilosis (n = 21), which was the most common species by both Vitek 2 and DNA sequencing. Using χ2 test no significant difference was noted between the techniques except that Vitek 2 did not identify C. viswanathii, C. orthopsilosis, and two non-Candida genera. Of 43 tested Candida isolates high susceptibility to amphotericin B (39/43, 90.6%) and natamycin (43/43, 100%) was noted. While none of the isolates produced coagulase, all produced esterase and catalase. The potential to form biofilm was detected in 23/43 (53.4%) isolates. Distribution of virulence factors by heat map analysis showed difference in metabolic activity of biofilm producers from nonbiofilm producers. Conclusions: Identified by Vitek 2 and DNA sequencing methods C. parapsilosis was the most common species associated with eye infections. Irrespective of the virulence factors elaborated, the Candida isolates were susceptible to commonly used antifungal drugs such as amphotericin B and natamycin.