Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ecology ; 95(6): 1612-21, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25039225

RESUMEN

In species that disperse by airborne propagules an inverse relationship is often assumed between propagule size and dispersal distance. However, for microscopic spores the evidence for the relationship remains ambiguous. Lagrangian stochastic dispersion models that have been successful in predicting seed dispersal appear to predict similar dispersal for all spore sizes up to -40 microm diameter. However, these models have assumed that spore size affects only the downwards drift of particles due to gravitation and have largely omitted the highly size-sensitive deposition process to surfaces such as forest canopy. On the other hand, they have assumed that spores are certain to deposit when the air parcel carrying them touches the ground. Here, we supplement a Lagrangian stochastic dispersion model with a mechanistic deposition model parameterized by empirical deposition data for 1-10 microm spores. The inclusion of realistic deposition improved the ability of the model to predict empirical data on the dispersal of a wood-decay fungus (aerodynamic spore size 3.8 microm). Our model predicts that the dispersal of 1-10 microm spores is in fact highly sensitive to spore size, with 97-98% of 1 microm spores but only 12-58% of 10-microm spores dispersing beyond 2 km in the simulated range of wind and canopy conditions. Further, excluding the assumption of certain deposition at the ground greatly increased the expected dispersal distances throughout the studied spore size range. Our results suggest that by evolutionary adjustment of spore size, release height and timing of release, fungi and other organisms with microscopic spores can change the expected distribution of dispersal locations markedly. The complex interplay of wind and canopy conditions in determining deposition resulted in some counterintuitive predictions, such as that spores disperse furthest under intermediate wind, providing intriguing hypotheses to be tested empirically in future studies.


Asunto(s)
Basidiomycota/fisiología , Esporas Fúngicas/citología , Esporas Fúngicas/fisiología , Demografía , Modelos Biológicos , Modelos Estadísticos , Reproducibilidad de los Resultados , Especificidad de la Especie , Procesos Estocásticos , Árboles , Viento
3.
Ecol Appl ; 18(6): 1454-69, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18767622

RESUMEN

In contrast with recent advances on the dynamics of the flow at a forest edge, few studies have considered its role on scalar transport and, in particular, on CO2 transfer. The present study addresses the influence of the abrupt roughness change on forest atmosphere CO2 exchange and contrasts the concentration and flux fields against those of a uniform forested surface. We use an atmospheric boundary layer two-equation closure model that accounts for the flow dynamics and vertical divergence of CO2 sources/sinks within a plant canopy. This paper characterizes the spatial variation of CO2 fluxes as a function of both sources/sinks distribution and the vertical structure of the canopy. Results suggest that the ground source plays a major role in the formation of wave-like vertical CO2 flux behavior downwind of a forest edge, despite the fact that the contribution of foliage sources/sinks changes monotonously. Such a variation is caused by scalar advection in the trunk space and reveals itself as a decrease or increase in vertical fluxes over the forest relative to carbon dioxide exchange of the underlying forest. The effect was more pronounced in model forests where the leaf area is concentrated in the upper part of the canopy. These results can be useful both for interpretation of existing measurements of net ecosystem exchange of CO2 (NEE) from flux towers in limited fetch conditions and in planning future CO2 transport experiments.


Asunto(s)
Movimientos del Aire , Dióxido de Carbono/análisis , Ecosistema , Modelos Teóricos , Árboles/metabolismo , Dióxido de Carbono/metabolismo
4.
Environ Pollut ; 152(3): 597-603, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17825967

RESUMEN

We simulated the REA system with dynamic deadband to study numerical value and the effect of atmospheric conditions on the empirical constant beta which relates vertical flux to concentration difference between updrafts and downdrafts. We found that the value of beta depends only weakly on the friction velocity and atmospheric stability. In agreement with previous studies, the median value obtained for a system with dynamic deadband proportional to 0.5 times the running mean of the standard deviation of vertical wind speed was beta=0.42+/-0.03. For a single half-hour measurement one has to consider the large uncertainty of +/-0.2. According to our study, the dynamic deadband enables the use of a constant value of beta in flux calculation.


Asunto(s)
Movimientos del Aire , Contaminación del Aire/análisis , Algoritmos , Dióxido de Carbono/análisis , Modelos Teóricos , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Temperatura
5.
Sci Rep ; 6: 25739, 2016 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-27158119

RESUMEN

Nitrous oxide (N2O) is an important greenhouse gas produced in soil and aquatic ecosystems. Its warming potential is 296 times higher than that of CO2. Most N2O emission measurements made so far are limited in temporal and spatial resolution causing uncertainties in the global N2O budget. Recent advances in laser spectroscopic techniques provide an excellent tool for area-integrated, direct and continuous field measurements of N2O fluxes using the eddy covariance method. By employing this technique on an agricultural site with four laser-based analysers, we show here that N2O exchange exhibits contrasting diurnal behaviour depending upon soil nitrogen availability. When soil N was high due to fertilizer application, N2O emissions were higher during daytime than during the night. However, when soil N became limited, emissions were higher during the night than during the day. These reverse diurnal patterns supported by isotopic analyses may indicate a dominant role of plants on microbial processes associated with N2O exchange. This study highlights the potential of new technologies in improving estimates of global N2O sources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA