Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Allergy Clin Immunol ; 136(1): 87-95.e6, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25956508

RESUMEN

BACKGROUND: Allergies to grass pollen are the number one cause of outdoor hay fever. The human immune system reacts with symptoms to allergen from pollen. OBJECTIVE: We investigated the natural variability in release of the major group 5 allergen from grass pollen across Europe. METHODS: Airborne pollen and allergens were simultaneously collected daily with a volumetric spore trap and a high-volume cascade impactor at 10 sites across Europe for 3 consecutive years. Group 5 allergen levels were determined with a Phl p 5-specific ELISA in 2 fractions of ambient air: particulate matter of greater than 10 µm in diameter and particulate matter greater than 2.5 µm and less than 10 µm in diameter. Mediator release by ambient air was determined in FcεRI-humanized basophils. The origin of pollen was modeled and condensed to pollen potency maps. RESULTS: On average, grass pollen released 2.3 pg of Phl p 5 per pollen. Allergen release per pollen (potency) varied substantially, ranging from less than 1 to 9 pg of Phl p 5 per pollen (5% to 95% percentile). The main variation was locally day to day. Average potency maps across Europe varied between years. Mediator release from basophilic granulocytes correlated better with allergen levels per cubic meter (r(2) = 0.80, P < .001) than with pollen grains per cubic meter (r(2) = 0.61, P < .001). In addition, pollen released different amounts of allergen in the non-pollen-bearing fraction of ambient air, depending on humidity. CONCLUSION: Across Europe, the same amount of pollen released substantially different amounts of group 5 grass pollen allergen. This variation in allergen release is in addition to variations in pollen counts. Molecular aerobiology (ie, determining allergen in ambient air) might be a valuable addition to pollen counting.


Asunto(s)
Aire/análisis , Basófilos/fisiología , Material Particulado/análisis , Proteínas de Plantas/análisis , Polen/química , Receptores de IgE/metabolismo , Rinitis Alérgica Estacional/inmunología , Degranulación de la Célula , Europa (Continente) , Humanos , Humedad , Poaceae/inmunología , Receptores de IgE/genética , Rinitis Alérgica Estacional/epidemiología , Estaciones del Año
2.
Int J Biometeorol ; 57(1): 125-36, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22434484

RESUMEN

An evaluation of performance of the System for Integrated modeLling of Atmospheric coMposition (SILAM) in application to birch pollen dispersion is presented. The system is described in a companion paper whereas the current study evaluates the model sensitivity to details of the pollen emission module parameterisation and to the meteorological input data. The most important parameters are highlighted. The reference year considered for the analysis is 2006. It is shown that the model is capable of predicting about two-thirds of allergenic alerts, with the odds ratio exceeding 12 for the best setup. Several other statistics corroborate with these estimations. Low-pollen concentration days are also predicted correctly in more than two-thirds of cases. The model experiences certain difficulties only with intermediate pollen concentrations. It is demonstrated that the most important input parameter is the near-surface temperature, the bias of which can easily jeopardise the results. The model sensitivity to random fluctuations of temperature is much lower. Other parameters important at various stages of pollen development, release, and dispersion are precipitation and ambient humidity, as well as wind direction.


Asunto(s)
Betula , Modelos Teóricos , Polen , Atmósfera , Europa (Continente) , Flores , Tiempo (Meteorología)
3.
Appl Environ Microbiol ; 68(2): 963-7, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11823245

RESUMEN

The association between moisture-related microbial growth (mesophilic fungi and bacteria) within insulated exterior walls and microbial concentrations in the indoor air was studied. The studied apartment buildings with precast concrete external walls were situated in a subarctic zone. Actinomycetes in the insulation layer were found to have increased concentrations in the indoor air. The moisture content of the indoor air significantly affected all measurable airborne concentrations.


Asunto(s)
Microbiología del Aire , Contaminación del Aire Interior/efectos adversos , Materiales de Construcción/microbiología , Actinomycetales/aislamiento & purificación , Bacterias/aislamiento & purificación , Clima Frío , Recuento de Colonia Microbiana , Monitoreo del Ambiente , Hongos/aislamiento & purificación , Vivienda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA