Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nature ; 548(7665): 74-77, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28723895

RESUMEN

Converting CO2 into fuel or chemical feedstock compounds could in principle reduce fossil fuel consumption and climate-changing CO2 emissions. One strategy aims for electrochemical conversions powered by electricity from renewable sources, but photochemical approaches driven by sunlight are also conceivable. A considerable challenge in both approaches is the development of efficient and selective catalysts, ideally based on cheap and Earth-abundant elements rather than expensive precious metals. Of the molecular photo- and electrocatalysts reported, only a few catalysts are stable and selective for CO2 reduction; moreover, these catalysts produce primarily CO or HCOOH, and catalysts capable of generating even low to moderate yields of highly reduced hydrocarbons remain rare. Here we show that an iron tetraphenylporphyrin complex functionalized with trimethylammonio groups, which is the most efficient and selective molecular electro- catalyst for converting CO2 to CO known, can also catalyse the eight-electron reduction of CO2 to methane upon visible light irradiation at ambient temperature and pressure. We find that the catalytic system, operated in an acetonitrile solution containing a photosensitizer and sacrificial electron donor, operates stably over several days. CO is the main product of the direct CO2 photoreduction reaction, but a two-pot procedure that first reduces CO2 and then reduces CO generates methane with a selectivity of up to 82 per cent and a quantum yield (light-to-product efficiency) of 0.18 per cent. However, we anticipate that the operating principles of our system may aid the development of other molecular catalysts for the production of solar fuels from CO2 under mild conditions.

2.
Small ; 18(10): e2105114, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34984800

RESUMEN

Photocatalytic hydrogen evolution (PHE) over semiconductor photocatalysts is usually constrained by the limited light-harvesting and separation of photogenerated electron-hole pairs. Most of the reported systems focusing on PHE are facilitated by consuming the photoinduced holes with organic sacrificial electron donors (SEDs). The introduction of the SEDs not only causes the environmental problem, but also increases the cost of the reaction. Herein, a dual-functional photocatalyst is developed with the morphology of sandwiched-like hollowed Pd@TiO2 @ZnIn2 S4 nanobox, which is synthesized by choosing microporous zeolites with sub-nanometer-sized Pd nanoparticles (Pd NPs) embedded as the sacrificial templates. The ternary Pd@TiO2 @ZnIn2 S4 photocatalyst exhibits a superior PHE rate (5.35 mmol g-1 h-1 ) and benzylamine oxidation conversion rate (>99%) simultaneously without adding any other SEDs. The PHE performance is superior to the reported composites of TiO2 and ZnIn2 S4 , which is attributed to the elevated light capture ability induced by the hollow structure, and the enhanced charge separation efficiency facilitated by the ultrasmall sized Pd NPs. The unique design presented here holds great potential for other highly efficient cooperative dual-functional photocatalytic reactions.

3.
J Am Chem Soc ; 143(35): 14253-14260, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34459185

RESUMEN

Metal halide perovskite quantum dots, with high light-absorption coefficients and tunable electronic properties, have been widely studied as optoelectronic materials, but their applications in photocatalysis are hindered by their insufficient stability because of the oxidation and agglomeration under light, heat, and atmospheric conditions. To address this challenge, herein, we encapsulated CsPbBr3 nanocrystals into a stable iron-based metal-organic framework (MOF) with mesoporous cages (∼5.5 and 4.2 nm) via a sequential deposition route to obtain a perovskite-MOF composite material, CsPbBr3@PCN-333(Fe), in which CsPbBr3 nanocrystals were stabilized from aggregation or leaching by the confinement effect of MOF cages. The monodispersed CsPbBr3 nanocrystals (4-5 nm) within the MOF lattice were directly observed by transmission electron microscopy and corresponding mapping analysis and further confirmed by powder X-ray diffraction, infrared spectroscopy, and N2 adsorption characterizations. Density functional theory calculations further suggested a significant interfacial charge transfer from CsPbBr3 quantum dots to PCN-333(Fe), which is ideal for photocatalysis. The CsPbBr3@PCN-333(Fe) composite exhibited excellent and stable oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic activities in aprotic systems. Furthermore, CsPbBr3@PCN-333(Fe) composite worked as the synergistic photocathode in the photoassisted Li-O2 battery, where CsPbBr3 and PCN-333(Fe) acted as optical antennas and ORR/OER catalytic sites, respectively. The CsPbBr3@PCN-333(Fe) photocathode showed lower overpotential and better cycling stability compared to CsPbBr3 nanocrystals or PCN-333(Fe), highlighting the synergy between CsPbBr3 and PCN-333(Fe) in the composite.

4.
Angew Chem Int Ed Engl ; 59(44): 19702-19707, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-32584481

RESUMEN

Oxidative coupling of methane (OCM) is considered one of the most promising catalytic technologies to upgrade methane. However, C2 products (C2 H6 /C2 H4 ) from conventional methane conversion have not been produced commercially owing to competition from overoxidation and carbon accumulation at high temperatures. Herein, we report the codeposition of Pt nanoparticles and CuOx clusters on TiO2 (PC-50) and use of the resulting photocatalyst for OCM in a flow reactor operated at room temperature under atmospheric pressure for the first time. The optimized Cu0.1 Pt0.5 /PC-50 sample showed a highest yield of C2 product of 6.8 µmol h-1 at a space velocity of 2400 h-1 , more than twice the sum of the activity of Pt/PC-50 (1.07 µmol h-1 ) and Cu/PC-50 (1.9 µmol h-1 ), it might also be the highest among photocatalytic methane conversions reported so far under atmospheric pressure. A high C2 selectivity of 60 % is also comparable to that attainable by conventional high-temperature (>943 K) thermal catalysis. It is proposed that Pt functions as an electron acceptor to facilitate charge separation, while holes could transfer to CuOx to avoid deep dehydrogenation and the overoxidation of C2 products.

5.
Angew Chem Int Ed Engl ; 59(41): 18224-18228, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32613736

RESUMEN

Intriguing properties and functions are expected to implant into metal-organic layers (MOLs) to achieve tailored pore environments and multiple functionalities owing to the synergies among multiple components. Herein, we demonstrate a facile one-pot synthetic strategy to incorporate multiple functionalities into stable zirconium MOLs via secondary ligand pillaring. Through the combination of Zr6 -BTB (BTB=benzene-1,3,5-tribenzoate) layers and diverse secondary ligands (including ditopic and tetratopic linkers), 31 MOFs with multi-functionalities were systematically prepared. Notably, a metal-phthalocyanine fragment was successfully incorporated into this Zr-MOL system, giving rise to an ideal platform for the selective oxidation of anthracene. The organic functionalization of two-dimensional MOLs can generate tunable porous structures and environments, which may facilitate the excellent catalytic performance of as-synthesized materials.

6.
J Am Chem Soc ; 140(51): 17830-17834, 2018 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-30525556

RESUMEN

Using a phenoxazine-based organic photosensitizer and an iron porphyrin molecular catalyst, we demonstrated photochemical reduction of CO2 to CO and CH4 with turnover numbers (TONs) of 149 and 29, respectively, under visible-light irradiation (λ > 435 nm) with a tertiary amine as sacrificial electron donor. This work is the first example of a molecular system using an earth-abundant metal catalyst and an organic dye to effect complete 8e-/8H+ reduction of CO2 to CH4, as opposed to typical 2e-/2H+ products of CO or formic acid. The catalytic system continuously produced methane even after prolonged irradiation up to 4 days. Using CO as the feedstock, the same reactive system was able to produce CH4 with 85% selectivity, 80 TON and a quantum yield of 0.47%. The redox properties of the organic photosensitizer and acidity of the proton source were shown to play a key role in driving the 8e-/8H+ processes.

7.
Nanoscale ; 16(10): 4961-4973, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38390689

RESUMEN

Microbial contamination and antibiotic pollution have threatened public health and it is important to develop a rapid and safe sterilization strategy. Among various disinfection strategies, photocatalytic antibacterial methods have drawn increasing attention due to their efficient disinfection performances and environment-friendly properties. Although there are some reviews about bacterial disinfection, specific reviews on photocatalysis focused on inorganic semiconductor nanomaterials are rarely reported. Herein, we present a systematic summary of recent disinfection developments based on inorganic nanomaterials (including metal oxides, sulfides, phosphides, carbon materials, and corresponding heterostructures) over the past five years. Moreover, key factors and challenges for inorganic nanomaterial-based photocatalytic disinfection are outlined, which holds great potential for future photocatalytic antibacterial applications.


Asunto(s)
Antibacterianos , Nanoestructuras , Antibacterianos/farmacología , Antibacterianos/química , Desinfección , Óxidos , Semiconductores
8.
ChemSusChem ; 17(12): e202301892, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38324459

RESUMEN

Inspired by natural enzymes, this study presents a nickel-based molecular catalyst, [Ni‖(N2S2)]Cl2 (NiN2S2, N2S2=2,11-dithia[3,3](2,6)pyridinophane), for the photochemical catalytic reduction of CO2 under visible light. The catalyst was synthesized and characterized using various techniques, including liquid chromatography-high resolution mass spectrometry (LC-HRMS), UV-Visible spectroscopy, and X-ray crystallography. The crystallographic analysis revealed a slightly distorted octahedral coordination geometry with a mononuclear Ni2+ cation, two nitrogen atoms and two sulfur atoms. Photocatalytic CO2 reduction experiments were performed in homogeneous conditions using the catalyst in combination with [Ru(bpy)3]Cl2 (bpy=2,2'-bipyridine) as a photosensitizer and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) as a sacrificial electron donor. The catalyst achieved a high selectivity of 89 % towards CO and a remarkable turnover number (TON) of 7991 during 8 h of visible light irradiation under CO2 in the presence of phenol as a co-substrate. The turnover frequency (TOF) in the initial 6 h was 1079 h-1, with an apparent quantum yield (AQY) of 1.08 %. Controlled experiments confirmed the dependency on the catalyst, light, and sacrificial electron donor for the CO2 reduction process. These findings demonstrate this bioinspired nickel molecular catalyst could be effective for fast and efficient photochemical catalytic reduction of CO2 to CO.

9.
J Colloid Interface Sci ; 659: 788-798, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38215615

RESUMEN

Photocatalytic hydrogen evolution (PHE) is frequently constrained by inadequate light utilization and the rapid combination rate of the photogenerated electron-hole pairs. Additionally, conventional PHE processes are often facilitated by the addition of sacrificial reagents to consume photo-induced holes, which makes this approach economically unfavorable. Herein, we designed a spatially separated bifunctional cocatalyst decorated Z-scheme heterojunction of hollow structured CdS (HCdS) @ZnIn2S4 (ZIS), which was prepared by a sacrificial hard template method followed by photo-deposition. Consequently, PdOx@HCdS@ZIS@Pt exhibited efficient PHE (86.38 mmol·g-1·h-1) and benzylamine (BA) oxidation coupling (164.75 mmol·g-1·h-1) with high selectivity (97.34 %). The unique hollow core-shelled morphology and bifunctional cocatalyst loading in this work hold great potential for the design and synthesis of bifunctional Z-scheme photocatalysts.

10.
ACS Appl Mater Interfaces ; 16(20): 26272-26279, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728610

RESUMEN

Porphyrin-based metal-organic frameworks (MOFs) are ideal platforms for heterogeneous photocatalysts toward CO2 reduction. To further explore photocatalytic MOF systems, it is also necessary to consider their ability to fine-tune the microenvironments of the active sites, which affects their overall catalytic operation. Herein, a kind of ionic liquid (IL, here is 3-butyric acid-1-methyl imidazolium bromide, BAMeImBr) was anchored to iron-porphyrinic Zr-MOFs with different amounts to obtain ILx@MOF-526 (MOF-526 = Zr6O4(OH)4(FeTCBPP)3, FeTCBPP = iron 5,10,15,20-tetra[4-(4'-carboxyphenyl)phenyl]-porphyrin, x = 100, 200, and 400). ILx@MOF-526 series was designed to investigate the effects of the microenvironmental and electronic structural modification on the efficiency and selectivity of the photochemical reduction of CO2 after introducing IL fragments. Compared to parent MOF-526, the production and selectivity of CO were greatly improved in the absence of any photosensitizer under visible light by the ILx@MOF-526 series. Among them, the CO yield of IL200@MOF-526 was up to 14.0 mmol g-1 within 72 h with a remarkable CO selectivity of 97%, which is superior to that of MOF-526 without BAMeIm+ modification and other amounts of BAMeIm+ loaded. Furthermore, density functional theory calculations were performed to study the mechanism of the CO2 reduction.

11.
Phys Chem Chem Phys ; 15(39): 16665-71, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-23982480

RESUMEN

Two new binuclear cobalt complexes, namely {[Co(dmgH)(dmgH2)]2L1} (I) and {[Co(dmgH)(dmgH2)]2L2} (II) (dmgH = dimethylglyoximate monoanion; dmgH2 = dimethylglyoxime, L1 = 1,3-bis(4-pyridyl)propane), L2 = 1,3-bis(imidazol-1-ylmethyl)benzene), have been synthesized by the self-assembly of [Co(dmgH)(dmgH2)] and L1 or L2, respectively. An efficient photocatalytic system was constructed by combining a noble-metal-free cobalt complex as the catalyst with Eosin Y dye (EY(2-)) as the photosensitizer to give an efficient H2 generating system under visible-light irradiation (λ > 420 nm) using triethanolamine (TEOA) as a sacrificial electron donor. The maximum amount of H2 generated was 1013 TON for I and 1134 TON for II over a 2 h irradiation period (λ > 420 nm) under the conditions of pH 8.0, 5% TEOA (v/v), an EY(2-) concentration of 4.0 × 10(-4) M and a catalyst concentration of 4.0 × 10(-4) M in the mixed solvent system of CH3CN-H2O (3 : 1, v/v). In addition, the mechanism of H2 generation in the photolysis system was briefly discussed.

12.
Glob Chall ; 5(2): 2000082, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33552555

RESUMEN

Photoreduction of CO2 into value-added fuels is one of the most promising strategies for tackling the energy crisis and mitigating the "greenhouse effect." Recently, metal-organic frameworks (MOFs) have been widely investigated in the field of CO2 photoreduction owing to their high CO2 uptake and adjustable functional groups. The fundamental factors and state-of-the-art advancements in MOFs for photocatalytic CO2 reduction are summarized from the critical perspectives of light absorption, carrier dynamics, adsorption/activation, and reaction on the surface of photocatalysts, which are the three main critical aspects for CO2 photoreduction and determine the overall photocatalytic efficiency. In view of the merits of porous materials, recent progress of three other types of porous materials are also briefly summarized, namely zeolite-based, covalent-organic frameworks based (COFs-based), and porous semiconductor or organic polymer based photocatalysts. The remarkable performance of these porous materials for solar-driven CO2 reduction systems is highlighted. Finally, challenges and opportunities of porous materials for photocatalytic CO2 reduction are presented, aiming to provide a new viewpoint for improving the overall photocatalytic CO2 reduction efficiency with porous materials.

13.
ACS Appl Mater Interfaces ; 12(20): 23356-23362, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32329595

RESUMEN

Efficient charge separation can promote photocatalysis of semiconductors. Herein, a hollow-structured TiO2 sphere decorated with spatially separated bifunctional cocatalysts was designed, which exhibited enhanced photocatalytic hydrogen generation. Ultrasmall-sized MOx (M = Pd, Co, Ni, or Cu) nanoparticles (NPs) were first introduced into a zeolite via confinement synthesis, and then, hollow TiO2 was fabricated by using the zeolite as a sacrificial template forming MOx@TiO2. Finally, Pt NPs were decorated on the outer shell, giving rise to MOx@TiO2@Pt, in which the MOx NPs and Pt NPs acted as hole capturers and electron sinks, respectively. Thanks to the enhanced light harvesting of the hollow structure and improved charge separation induced by the smaller-sized cocatalysts as well as spatially separated bifunctional cocatalysts, the as-prepared PdOx@TiO2@Pt catalyst exhibited a superior photocatalytic hydrogen-generation property (0.45 mmol h-1). This work demonstrates the advantage of the spatially separated bifunctional cocatalysts in enhancing the photocatalytic properties of semiconductors.

14.
ChemSusChem ; 10(22): 4447-4450, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-28862388

RESUMEN

An iron-substituted tetraphenyl porphyrin bearing positively charged trimethylammonio groups at the para position of each phenyl ring catalyzes the photoinduced conversion of CO2 . This complex is water soluble and acts as a molecular catalyst to selectively reduce CO2 into CO under visible-light irradiation in aqueous solutions (acetonitrile/water=1:9 v/v) with the assistance of purpurin, a simple organic photosensitizer. CO is produced with a catalytic selectivity of 95 % and turnover number up to 120, illustrating the possibility of photocatalyzing the reduction of CO2 in aqueous solution by using visible light, a simple organic sensitizer coupled to an amine as a sacrificial electron donor, and an earth-abundant metal-based molecular catalyst.


Asunto(s)
Dióxido de Carbono/química , Monóxido de Carbono/química , Complejos de Coordinación/química , Hierro/química , Procesos Fotoquímicos , Agua/química , Catálisis , Luz , Oxidación-Reducción
15.
Chem Commun (Camb) ; 53(19): 2830-2833, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28217798

RESUMEN

A substituted tetraphenyl iron porphyrin, bearing positively charged trimethylammonio groups at the para position of each phenyl ring, demonstrates its ability as a homogeneous molecular catalyst to selectively reduce CO2 to CO under visible light irradiation in organic media without the assistance of a sensitizer and no competitive hydrogen evolution for several days.

16.
Magn Reson Med ; 54(5): 1241-7, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16193469

RESUMEN

Single shot 3D GRASE is less sensitive to field inhomogeneity and susceptibility effects than gradient echo based fast imaging sequences while preserving the acquisition speed. In this study, a continuous arterial spin labeling (CASL) pulse was added prior to the single shot 3D GRASE readout and quantitative perfusion measurements were carried out at 3 T, at rest and during functional activation. The sequence performance was evaluated by comparison with a CASL sequence with EPI readout. It is shown that perfusion measurements using CASL GRASE can be performed safely on humans at 3 T without exceeding the current RF power deposition limits. The maps of resting cerebral blood flow generated from the GRASE images are comparable to those obtained with the 2D EPI readout, albeit with better coverage in the orbitofrontal cortex. The sequence proved effective for functional imaging, yielding time series of images with improved temporal SNR with respect to EPI and group activation maps with increased significance levels. The method was further improved using parallel imaging techniques to provide increased spatial resolution and better separation of the gray-white matter cerebral blood flow maps.


Asunto(s)
Mapeo Encefálico/métodos , Imagen Eco-Planar/métodos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Corteza Visual/irrigación sanguínea , Corteza Visual/fisiología , Adulto , Algoritmos , Velocidad del Flujo Sanguíneo , Arterias Cerebrales/anatomía & histología , Arterias Cerebrales/fisiología , Circulación Cerebrovascular/fisiología , Potenciales Evocados Visuales/fisiología , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Marcadores de Spin , Corteza Visual/anatomía & histología
17.
Science ; 299(5605): 417-20, 2003 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-12532023

RESUMEN

Objects displaced intermittently across the visual field will nonetheless give an illusion of continuous motion [called apparent motion (AM)] under many common conditions. It is believed that form perception is of minor importance in determining AM, and that AM is mediated by motion-sensitive areas in the "where" pathway of the cortex. However, form and motion typically interact in specific ways when natural objects move through the environment. We used functional magnetic resonance imaging to measure cortical activation to long-range AM, compared to short-range AM and flicker, while we varied stability of structural differences between forms. Long-range AM activated the anterior-temporal lobe in the visual ventral pathway, and the response varied according to the form stability. The results suggest that long-range AM is associated with neural systems for form perception.


Asunto(s)
Percepción de Forma , Percepción de Movimiento , Lóbulo Temporal/fisiología , Vías Visuales/fisiología , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética , Lóbulo Occipital/fisiología , Ilusiones Ópticas , Corteza Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA