Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Chemistry ; 30(55): e202402470, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39073203

RESUMEN

This paper describes the synthesis of a cerium(IV)-based molecular gear composed of a thioether functionalized phthalocyanine anchoring ligand, and a helical naphthalocyanine rotating cogwheel functionalized with four carbazoles. The naphthalocyanine ligand 9 was obtained after eleven steps (overall yield of 0.2 %) as a mixture of three geometrical isomers, two of which are chiral and exhibit high levels of steric hindrance, as shown by DFT calculations. Their attributions have been made using 1H-NMR based on their different symmetry groups. The ratio of isomers was also determined and the prochiral C4h naphthalocyanine shown to be the major compound (55 %). Its heteroleptic complexation with cerium (IV) and the anchoring phthalocyanine ligand 10 gave the targeted molecular gear in a 16 % yield.

2.
Chemphyschem ; : e202400615, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39305012

RESUMEN

Two novel diarylethene-fused subporphyrinoids were prepared and characterized. A mono diarylethene derivative was obtained via a statistical condensation reaction with 2 eq. of 1,2-dicyanobenzene and 1 eq. of thiophene-disubstituted butenedinitrile. The symmetric triply diarylethene-fused subporphyrazine was synthesized via a cyclotrimerization reaction of the thiophene-disubstituted butenedinitrile derivative. These compounds were characterized by NMR spectroscopy and high-resolution mass spectrometry. The spectroscopic properties have been measured in hexane and in chloroform. The mono diarylethene-fused-type compound showed photochromism at 580 nm and >700 nm wavelength, accompanied by degradation. According to DFT calculations, photoreactivity likely depends on the contribution of aromatic feature of pyrrole ring bonded to two thiophene rings.

3.
Molecules ; 29(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38398640

RESUMEN

Phthalocyanines and their double-decker complexes are interesting in designing rotative molecular machines, which are crucial for the development of molecular motors and gears. This study explores the design and synthesis of three bulky phthalocyanine ligands functionalized at the α-positions with phenothiazine or carbazole fragments, aiming to investigate dynamic rotational motions in these sterically hindered molecular complexes. Homoleptic and heteroleptic double-decker complexes were synthesized through the complexation of these ligands with Ce(IV). Notably, CeIV(Pc2)2 and CeIV(Pc3)2, both homoleptic complexes, exhibited blocked rotational motions even at high temperatures. The heteroleptic CeIV(Pc)(Pc3) complex, designed to lower symmetry, demonstrated switchable rotation along the pseudo-C4 symmetry axis upon heating the solution. Variable-temperature 1H-NMR studies revealed distinct dynamic behaviors in these complexes. This study provides insights into the rotational dynamics of sterically hindered double-decker complexes, paving the way for their use in the field of rotative molecular machines.

4.
Beilstein J Org Chem ; 20: 287-305, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38379731

RESUMEN

The "precursor approach" has proved particularly valuable for the preparation of insoluble and unstable π-conjugated polycyclic compounds (π-CPCs), which cannot be synthesized via in-solution organic chemistry, for their improved processing, as well as for their electronic investigation both at the material and single-molecule scales. This method relies on the synthesis and processing of soluble and stable direct precursors of the target π-CPCs, followed by their final conversion in situ, triggered by thermal activation, photoirradiation or redox control. Beside well-established reactions involving the elimination of carbon-based small molecules, i.e., retro-Diels-Alder and decarbonylation processes, the late-stage extrusion of chalcogen fragments has emerged as a highly promising synthetic tool to access a wider variety of π-conjugated polycyclic structures and thus to expand the potentialities of the "precursor approach" for further improvements of molecular materials' performances. This review gives an overview of synthetic strategies towards π-CPCs involving the ultimate elimination of chalcogen fragments upon thermal activation, photoirradiation and electron exchange.

5.
Chemistry ; 29(19): e202203483, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36695199

RESUMEN

This paper reports the synthesis of ruthenium-based molecular gear prototypes composed of a brominated or non-brominated pentaphenylcyclopentadienyl ligand as an anchoring unit and a tripodal ligand with aryl-functionalized indazoles as a rotating cogwheel. Single crystal structures of the ruthenium complexes revealed that the appended aryl groups increase the apparent diameter of the cogwheel rendering them larger than the diameter of the anchoring units and consequently making them suitable for intermolecular gearing motions once the complexes will be adsorbed on a surface.

6.
Chemistry ; 27(47): 12019-12031, 2021 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-34131971

RESUMEN

This review highlights the major efforts devoted to the development of molecular gears over the past 40 years, from pioneering covalent bis-triptycyl systems undergoing intramolecular correlated rotation in solution, to the most recent examples of gearing systems anchored on a surface, which allow intermolecular transmission of mechanical power. Emphasis is laid on the different strategies devised progressively to control the architectures of molecular bevel and spur gears, as intramolecular systems in solution or intermolecular systems on surfaces, while aiming at increased efficiency, complexity and functionality.


Asunto(s)
Rotación
7.
Chemistry ; 27(65): 16242-16249, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34492156

RESUMEN

We report the synthesis of conceptually new prototypes of molecular winches with the ultimate aim to investigate the work performed by a single ruthenium-based molecular motor anchored on a surface by probing its ability to pull a load upon electrically-driven directional rotation. According to a technomimetic design, the motor was embedded in a winch structure, with a long flexible polyethylene glycol chain terminated by an azide hook to connect a variety of molecular loads. The structure of the motor was first derivatized by means of two sequential cross-coupling reactions involving a penta(4-halogenophenyl)cyclopentadienyl hydrotris(indazolyl)borate ruthenium(II) precursor and the resulting benzylamine derivative was next exploited as key intermediate in the divergent synthesis of a family of nanowinch prototypes. A one-pot method involving sequential peptide coupling and Cu-catalyzed azide-alkyne cycloaddition was developed to yield four loaded nanowinches, with load fragments encompassing triptycene, fullerene and porphyrin moieties.


Asunto(s)
Azidas , Rutenio , Alquinos , Ciclización , Reacción de Cicloadición
8.
Inorg Chem ; 60(6): 3492-3501, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33606523

RESUMEN

A molecular motor that has been previously shown to rotate when fueled by electrons through a scanning tunneling microscope tip has been functionalized with a terarylene photochrome fragment on its rotating subunit. Photoisomerization has been performed under UV irradiation. Variable-temperature 1H NMR and UV-vis studies demonstrate the rotational motion and its braking action after photoisomerization. The braking action can be reversed by thermal heating. Once the rigid and planar closed form is obtained, the rotation is effectively slowed at lower temperature, making this new rotor a potential motor with an independent response to electrons and light.

9.
Phys Chem Chem Phys ; 23(31): 17049-17056, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34346431

RESUMEN

The photophysical properties of heteroleptic rotor-like Ru(ii) complexes containing both a cyclopentadienyl-type ligand and a hydrotris(indazolyl)borate chelating unit with a piano stool structure (Ar5L1-Ru-S1 and L3-Ru-S1) and their corresponding subunits have been investigated. The complexes show peculiar absorption features when compared with their related ligands or fragments. L3-Ru-S1 was found to be non-emissive, while Ar5L1-Ru-S1 showed a weak emission with a quantum yield of 0.27%. With the help of DFT calculations, we demonstrate that the new absorption features can be attributed to ruthenium-based charge transfer transitions which involve the π* orbitals of the phenyl substituents of the cyclopentadienyl ligand.

10.
Chemistry ; 26(52): 11913, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32841409

RESUMEN

Invited for the cover of this issue is Gwénaël Rapenne and co-workers from CEMES-CNRS at University Paul Sabatier, Toulouse, France and from NAIST, Nara, Japan. The image depicts an artistic representation of a nanocar race. Read the full text of the article at 10.1002/chem.202001999.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA