Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 206
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 23(5): 369-382, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35260831

RESUMEN

Extracellular vesicles (EVs) are increasingly recognized as important mediators of intercellular communication. They have important roles in numerous physiological and pathological processes, and show considerable promise as novel biomarkers of disease, as therapeutic agents and as drug delivery vehicles. Intriguingly, however, understanding of the cellular and molecular mechanisms that govern the many observed functions of EVs remains far from comprehensive, at least partly due to technical challenges in working with these small messengers. Here, we highlight areas of consensus as well as contentious issues in our understanding of the intracellular and intercellular journey of EVs: from biogenesis, release and dynamics in the extracellular space, to interaction with and uptake by recipient cells. We define knowledge gaps, identify key questions and challenges, and make recommendations on how to address these.


Asunto(s)
Vesículas Extracelulares , Transporte Biológico , Biomarcadores/metabolismo , Comunicación Celular , Sistemas de Liberación de Medicamentos , Vesículas Extracelulares/metabolismo
3.
Nat Rev Mol Cell Biol ; 19(4): 213-228, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29339798

RESUMEN

Extracellular vesicles are a heterogeneous group of cell-derived membranous structures comprising exosomes and microvesicles, which originate from the endosomal system or which are shed from the plasma membrane, respectively. They are present in biological fluids and are involved in multiple physiological and pathological processes. Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material. Knowledge of the cellular processes that govern extracellular vesicle biology is essential to shed light on the physiological and pathological functions of these vesicles as well as on clinical applications involving their use and/or analysis. However, in this expanding field, much remains unknown regarding the origin, biogenesis, secretion, targeting and fate of these vesicles.


Asunto(s)
Vesículas Extracelulares/fisiología , Animales , Transporte Biológico Activo , Micropartículas Derivadas de Células/fisiología , Micropartículas Derivadas de Células/ultraestructura , Exosomas/fisiología , Exosomas/ultraestructura , Vesículas Extracelulares/ultraestructura , Humanos , Fusión de Membrana , Modelos Biológicos , Biogénesis de Organelos , Transducción de Señal
4.
Annu Rev Cell Dev Biol ; 30: 255-89, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25288114

RESUMEN

In the 1980s, exosomes were described as vesicles of endosomal origin secreted from reticulocytes. Interest increased around these extracellular vesicles, as they appeared to participate in several cellular processes. Exosomes bear proteins, lipids, and RNAs, mediating intercellular communication between different cell types in the body, and thus affecting normal and pathological conditions. Only recently, scientists acknowledged the difficulty of separating exosomes from other types of extracellular vesicles, which precludes a clear attribution of a particular function to the different types of secreted vesicles. To shed light into this complex but expanding field of science, this review focuses on the definition of exosomes and other secreted extracellular vesicles. Their biogenesis, their secretion, and their subsequent fate are discussed, as their functions rely on these important processes.


Asunto(s)
Comunicación Celular/fisiología , Micropartículas Derivadas de Células/fisiología , Vesículas Transportadoras/fisiología , Animales , Linfocitos B/metabolismo , Transporte Biológico , Centrifugación por Gradiente de Densidad , Técnicas Citológicas , Endosomas/fisiología , Endosomas/ultraestructura , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Exosomas/fisiología , Líquido Extracelular/metabolismo , Humanos , Fusión de Membrana , Lípidos de la Membrana/fisiología , Proteínas de la Membrana/fisiología , MicroARNs/metabolismo , Neoplasias/metabolismo , Células Procariotas/metabolismo , Células Procariotas/ultraestructura , ARN Mensajero/metabolismo , Reticulocitos/metabolismo , Proteínas SNARE/fisiología , Proteínas de Unión al GTP rab/fisiología
5.
Proc Natl Acad Sci U S A ; 121(16): e2321323121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38607931

RESUMEN

Extracellular vesicles (EVs) facilitate the transfer of proteins, lipids, and genetic material between cells and are recognized as an additional mechanism for sustaining intercellular communication. In the epidermis, the communication between melanocytes and keratinocytes is tightly regulated to warrant skin pigmentation. Melanocytes synthesize the melanin pigment in melanosomes that are transported along the dendrites prior to the transfer of melanin pigment to keratinocytes. EVs secreted by keratinocytes modulate pigmentation in melanocytes [(A. Lo Cicero et al., Nat. Commun. 6, 7506 (2015)]. However, whether EVs secreted by keratinocytes contribute to additional processes essential for melanocyte functions remains elusive. Here, we show that keratinocyte EVs enhance the ability of melanocytes to generate dendrites and mature melanosomes and promote their efficient transfer. Further, keratinocyte EVs carrying Rac1 induce important morphological changes, promote dendrite outgrowth, and potentiate melanin transfer to keratinocytes. Hence, in addition to modulating pigmentation, keratinocytes exploit EVs to control melanocyte plasticity and transfer capacity. These data demonstrate that keratinocyte-derived EVs, by regulating melanocyte functions, are major contributors to cutaneous pigmentation and expand our understanding of the mechanism underlying skin pigmentation via a paracrine EV-mediated communication.


Asunto(s)
Vesículas Extracelulares , Melanosomas , Melaninas , Melanocitos , Queratinocitos
7.
Cell ; 144(3): 402-13, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21295700

RESUMEN

The functions of caveolae, the characteristic plasma membrane invaginations, remain debated. Their abundance in cells experiencing mechanical stress led us to investigate their role in membrane-mediated mechanical response. Acute mechanical stress induced by osmotic swelling or by uniaxial stretching results in a rapid disappearance of caveolae, in a reduced caveolin/Cavin1 interaction, and in an increase of free caveolins at the plasma membrane. Tether-pulling force measurements in cells and in plasma membrane spheres demonstrate that caveola flattening and disassembly is the primary actin- and ATP-independent cell response that buffers membrane tension surges during mechanical stress. Conversely, stress release leads to complete caveola reassembly in an actin- and ATP-dependent process. The absence of a functional caveola reservoir in myotubes from muscular dystrophic patients enhanced membrane fragility under mechanical stress. Our findings support a new role for caveolae as a physiological membrane reservoir that quickly accommodates sudden and acute mechanical stresses.


Asunto(s)
Caveolas/fisiología , Células Endoteliales/citología , Células Musculares/fisiología , Actinas/fisiología , Adenosina Trifosfato/fisiología , Animales , Caveolas/ultraestructura , Línea Celular , Células Endoteliales/fisiología , Humanos , Ratones , Células Musculares/citología , Estrés Mecánico
8.
Cell ; 141(2): 231-42, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20403321

RESUMEN

Bacterial Shiga-like toxins are virulence factors that constitute a significant public health threat worldwide, and the plant toxin ricin is a potential bioterror weapon. To gain access to their cytosolic target, ribosomal RNA, these toxins follow the retrograde transport route from the plasma membrane to the endoplasmic reticulum, via endosomes and the Golgi apparatus. Here, we used high-throughput screening to identify small molecule inhibitors that protect cells from ricin and Shiga-like toxins. We identified two compounds that selectively block retrograde toxin trafficking at the early endosome-TGN interface, without affecting compartment morphology, endogenous retrograde cargos, or other trafficking steps, demonstrating an unexpected degree of selectivity and lack of toxicity. In mice, one compound clearly protects from lethal nasal exposure to ricin. Our work discovers the first small molecule that shows efficacy against ricin in animal experiments and identifies the retrograde route as a potential therapeutic target.


Asunto(s)
Benzamidas/farmacología , Benzodiazepinonas/farmacología , Citoprotección , Transporte de Proteínas , Ricina/antagonistas & inhibidores , Tiofenos/farmacología , Administración Intranasal , Animales , Benzamidas/química , Benzodiazepinonas/química , Línea Celular Tumoral , Membrana Celular/metabolismo , Endocitosis , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Células HeLa , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Proteínas Qa-SNARE/metabolismo , Ricina/administración & dosificación , Ricina/toxicidad , Toxinas Shiga/antagonistas & inhibidores , Toxinas Shiga/toxicidad , Tiofenos/química , Red trans-Golgi/metabolismo
9.
Nat Methods ; 18(9): 1013-1026, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34446922

RESUMEN

Extracellular vesicles (EVs) are nano-sized lipid bilayer vesicles released by virtually every cell type. EVs have diverse biological activities, ranging from roles in development and homeostasis to cancer progression, which has spurred the development of EVs as disease biomarkers and drug nanovehicles. Owing to the small size of EVs, however, most studies have relied on isolation and biochemical analysis of bulk EVs separated from biofluids. Although informative, these approaches do not capture the dynamics of EV release, biodistribution, and other contributions to pathophysiology. Recent advances in live and high-resolution microscopy techniques, combined with innovative EV labeling strategies and reporter systems, provide new tools to study EVs in vivo in their physiological environment and at the single-vesicle level. Here we critically review the latest advances and challenges in EV imaging, and identify urgent, outstanding questions in our quest to unravel EV biology and therapeutic applications.


Asunto(s)
Vesículas Extracelulares , Microscopía/métodos , Animales , Colorantes/química , Epítopos , Vesículas Extracelulares/química , Vesículas Extracelulares/patología , Vesículas Extracelulares/fisiología , Colorantes Fluorescentes/química , Humanos
10.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34433668

RESUMEN

Pigment organelles of vertebrates belong to the lysosome-related organelle (LRO) family, of which melanin-producing melanosomes are the prototypes. While their anabolism has been extensively unraveled through the study of melanosomes in skin melanocytes, their catabolism remains poorly known. Here, we tap into the unique ability of crab spiders to reversibly change body coloration to examine the catabolism of their pigment organelles. By combining ultrastructural and metal analyses on high-pressure frozen integuments, we first assess whether pigment organelles of crab spiders belong to the LRO family and second, how their catabolism is intracellularly processed. Using scanning transmission electron microscopy, electron tomography, and nanoscale Synchrotron-based scanning X-ray fluorescence, we show that pigment organelles possess ultrastructural and chemical hallmarks of LROs, including intraluminal vesicles and metal deposits, similar to melanosomes. Monitoring ultrastructural changes during bleaching suggests that the catabolism of pigment organelles involves the degradation and removal of their intraluminal content, possibly through lysosomal mechanisms. In contrast to skin melanosomes, anabolism and catabolism of pigments proceed within the same cell without requiring either cell death or secretion/phagocytosis. Our work hence provides support for the hypothesis that the endolysosomal system is fully functionalized for within-cell turnover of pigments, leading to functional maintenance under adverse conditions and phenotypic plasticity. First formulated for eye melanosomes in the context of human vision, the hypothesis of intracellular turnover of pigments gets unprecedented strong support from pigment organelles of spiders.


Asunto(s)
Color , Lisosomas/metabolismo , Melanosomas/fisiología , Orgánulos/fisiología , Pigmentos Biológicos/fisiología , Piel/metabolismo , Arañas/fisiología , Animales , Endosomas/metabolismo
11.
Int J Mol Sci ; 24(4)2023 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-36835115

RESUMEN

Extracellular vesicles are now considered as active contributors to melanoma progression through their capacity to modify the tumor microenvironment and to favor the formation of a pre-metastatic niche. These prometastatic roles of tumor-derived EVs would pass through their interaction with the extracellular matrix (ECM) and its remodeling, in turn providing a substrate favoring persistent tumor cell migration. Nevertheless, the capacity of EVs to directly interact with ECM components is still questionable. In this study, we use electron microscopy and a pull-down assay to test the capacity of sEVs, derived from different melanoma cell lines, to physically interact with collagen I. We were able to generate collagen fibrils coated with sEVs and to show that melanoma cells release subpopulations of sEVs that can differentially interact with collagen.


Asunto(s)
Vesículas Extracelulares , Melanoma , Humanos , Vesículas Extracelulares/metabolismo , Melanoma/metabolismo , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Microambiente Tumoral
12.
Cell Mol Life Sci ; 79(1): 47, 2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34921635

RESUMEN

Mahogunin Ring Finger 1 (MGRN1) is an E3-ubiquitin ligase absent in dark-furred mahoganoid mice. We investigated the mechanisms of hyperpigmentation in Mgrn1-null melan-md1 melanocytes, Mgrn1-KO cells obtained by CRISPR-Cas9-mediated knockdown of Mgrn1 in melan-a6 melanocytes, and melan-a6 cells depleted of MGRN1 by siRNA treatment. Mgrn1-deficient melanocytes showed higher melanin content associated with increased melanosome abundance and higher fraction of melanosomes in highly melanized maturation stages III-IV. Expression, post-translational processing and enzymatic activity of the rate-limiting melanogenic enzyme tyrosinase measured in cell-free extracts were comparable in control and MGRN1-depleted cells. However, tyrosinase activity measured in situ in live cells and expression of genes associated with regulation of pH increased upon MGRN1 repression. Using pH-sensitive fluorescent probes, we found that downregulation of MGRN1 expression in melanocytes and melanoma cells increased the pH of acidic organelles, including melanosomes, strongly suggesting a previously unknown role of MGRN1 in the regulation of melanosomal pH. Among the pH regulatory genes upregulated by Mgrn1 knockdown, we identified those encoding several subunits of the vacuolar adenosine triphosphatase V-ATPase (mostly Atp6v0d2) and a calcium channel of the transient receptor potential channel family, Mucolipin 3 (Mcoln3). Manipulation of expression of the Mcoln3 gene showed that overexpression of Mcoln3 played a significant role in neutralization of the pH of acidic organelles and activation of tyrosinase in MGRN1-depleted cells. Therefore, lack of MGRN1 led to cell-autonomous stimulation of pigment production in melanocytes mostly by increasing tyrosinase specific activity through neutralization of the melanosomal pH in a MCOLN3-dependent manner.


Asunto(s)
Pigmentación , Piel/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Animales , Humanos , Concentración de Iones de Hidrógeno , Melanocitos , Melanoma Experimental , Melanosomas , Ratones , Piel/citología , Piel/patología
13.
J Cell Sci ; 132(5)2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30709920

RESUMEN

The metabolism of PI(3,5)P2 is regulated by the PIKfyve, VAC14 and FIG4 complex, mutations in which are associated with hypopigmentation in mice. These pigmentation defects indicate a key, but as yet unexplored, physiological relevance of this complex in the biogenesis of melanosomes. Here, we show that PIKfyve activity regulates formation of amyloid matrix composed of PMEL protein within the early endosomes in melanocytes, called stage I melanosomes. PIKfyve activity controls the membrane remodeling of stage I melanosomes, which regulates PMEL abundance, sorting and processing. PIKfyve activity also affects stage I melanosome kiss-and-run interactions with lysosomes, which are required for PMEL amyloidogenesis and the establishment of melanosome identity. Mechanistically, PIKfyve activity promotes both the formation of membrane tubules from stage I melanosomes and their release by modulating endosomal actin branching. Taken together, our data indicate that PIKfyve activity is a key regulator of the melanosomal import-export machinery that fine tunes the formation of functional amyloid fibrils in melanosomes and the maintenance of melanosome identity.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Flavoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/metabolismo , Melanocitos/metabolismo , Melanosomas/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoinosítido Fosfatasas/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Amiloide/metabolismo , Animales , Células Cultivadas , Flavoproteínas/genética , Homeostasis , Péptidos y Proteínas de Señalización Intracelular/genética , Melanocitos/patología , Melanosomas/ultraestructura , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/genética , Fosfoinosítido Fosfatasas/genética , Transporte de Proteínas , Epitelio Pigmentado de la Retina/patología , Antígeno gp100 del Melanoma/metabolismo
14.
Physiology (Bethesda) ; 34(3): 169-177, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30968753

RESUMEN

Extracellular vesicles (EVs), cell-derived membrane structures, are secreted after fusion of endosomes with the plasma membrane (exosomes) or shed from the plasma membrane (microvesicles). EVs play a key role both in physiological balance and homeostasis and in disease processes by their ability to participate in intercellular signaling and communication.


Asunto(s)
Comunicación Celular , Micropartículas Derivadas de Células/metabolismo , Exosomas/metabolismo , Homeostasis , Animales , Humanos , Macrófagos/metabolismo , Melanocitos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Transducción de Señal
15.
J Cell Sci ; 131(18)2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30154210

RESUMEN

Sorting endosomes (SEs) are the regulatory hubs for sorting cargo to multiple organelles, including lysosome-related organelles, such as melanosomes in melanocytes. In parallel, melanosome biogenesis is initiated from SEs with the processing and sequential transport of melanocyte-specific proteins toward maturing melanosomes. However, the mechanism of cargo segregation on SEs is largely unknown. Here, RNAi screening in melanocytes revealed that knockdown of Rab4A results in defective melanosome maturation. Rab4A-depletion increases the number of vacuolar endosomes and disturbs the cargo sorting, which in turn lead to the mislocalization of melanosomal proteins to lysosomes, cell surface and exosomes. Rab4A localizes to the SEs and forms an endosomal complex with the adaptor AP-3, the effector rabenosyn-5 and the motor KIF3, which possibly coordinates cargo segregation on SEs. Consistent with this, inactivation of rabenosyn-5, KIF3A or KIF3B phenocopied the defects observed in Rab4A-knockdown melanocytes. Further, rabenosyn-5 was found to associate with rabaptin-5 or Rabip4/4' (isoforms encoded by Rufy1) and differentially regulate cargo sorting from SEs. Thus, Rab4A acts a key regulator of cargo segregation on SEs.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Endosomas/metabolismo , Lisosomas/metabolismo , Proteínas de Unión al GTP rab4/metabolismo , Humanos
16.
Traffic ; 18(11): 747-757, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28857423

RESUMEN

The protein complex composed of the kinase PIKfyve, the phosphatase FIG4 and the scaffolding protein VAC14 regulates the metabolism of phosphatidylinositol 3,5-bisphosphate, which serves as both a signaling lipid and the major precursor for phosphatidylinositol 5-phosphate. This complex is involved in the homeostasis of late endocytic compartments, but its precise role in maintaining the dynamic equilibrium of late endosomes, endolysosomes and lysosomes remains to be determined. Here, we report that inhibition of PIKfyve activity impairs terminal lysosome reformation from acidic and hydrolase-active, but enlarged endolysosomes. Our live-cell imaging and electron tomography data show that PIKfyve activity regulates extensive membrane remodeling that initiates reformation of lysosomes from endolysosomes. Altogether, our findings show that PIKfyve activity is required to maintain the dynamic equilibrium of late endocytic compartments by regulating the reformation of terminal storage lysosomes.


Asunto(s)
Endosomas/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Técnicas de Cultivo de Célula , Endosomas/ultraestructura , Flavoproteínas/metabolismo , Células HeLa , Homeostasis , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lisosomas/ultraestructura , Microscopía Electrónica , Microscopía Fluorescente , Monoéster Fosfórico Hidrolasas/metabolismo , Transporte de Proteínas
17.
J Cell Sci ; 130(23): 4038-4050, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29061883

RESUMEN

Influenza A is a rapidly evolving virus that is successful in provoking periodic epidemics and occasional pandemics in humans. Viral assembly is complex as the virus incorporates an eight-partite genome of RNA (in the form of viral ribonucleoproteins, vRNPs), and viral genome assembly - with its implications to public health - is not completely understood. It has previously been reported that vRNPs are transported to the cell surface on Rab11-containing vesicles by using microtubules but, so far, no molecular motor has been assigned to the process. Here, we have identified KIF13A, a member of the kinesin-3 family, as the first molecular motor to efficiently transport vRNP-Rab11 vesicles during infection with influenza A. Depletion of KIF13A resulted in reduced viral titers and less accumulation of vRNPs at the cell surface, without interfering with the levels of other viral proteins at sites of viral assembly. In addition, when overexpressed and following two separate approaches to displace vRNP-Rab11 vesicles, KIF13A increased levels of vRNP at the plasma membrane. Together, our results show that KIF13A plays an important role in the transport of influenza A vRNPs, a crucial step for viral assembly.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Virus de la Influenza A/patogenicidad , Cinesinas/metabolismo , Transporte de Proteínas/fisiología , Ribonucleoproteínas/metabolismo , Línea Celular , Membrana Celular/metabolismo , Genoma Viral/genética , Humanos , Microtúbulos/metabolismo , Proteínas Virales/metabolismo , Ensamble de Virus/fisiología
18.
Nat Rev Mol Cell Biol ; 8(10): 786-97, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17878918

RESUMEN

Melanosomes are tissue-specific lysosome-related organelles of pigment cells in which melanins are synthesized and stored. Analyses of the trafficking and fate of melanosomal components are beginning to reveal how melanosomes are formed through novel pathways from early endosomal intermediates. These studies unveil generalized structural and functional modifications of the endosomal system in specialized cells, and provide unexpected insights into the biogenesis of multivesicular bodies and how compartmentalization regulates protein refolding. Moreover, genetic disorders that affect the biogenesis of melanosomes and other lysosome-related organelles have shed light onto the molecular machinery that controls specialized endosomal sorting events.


Asunto(s)
Endosomas/metabolismo , Membranas Intracelulares/metabolismo , Melanosomas/fisiología , Animales , Transporte Biológico Activo/fisiología , Humanos , Transporte de Proteínas/fisiología
19.
Int J Mol Sci ; 19(2)2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29443872

RESUMEN

Melanocytes are specialized cells that generate unique organelles called melanosomes in which melanin is synthesized and stored. Melanosome biogenesis and melanocyte pigmentation require the transport and delivery of melanin synthesizing enzymes, such as tyrosinase and related proteins (e.g., TYRP1), from endosomes to maturing melanosomes. Among the proteins controlling endosome-melanosome transport, AP-1 together with KIF13A coordinates the endosomal sorting and trafficking of TYRP1 to melanosomes. We identify here ß1-adaptin AP-1 subunit-derived peptides of 5 amino acids that block the interaction of KIF13A with AP-1 in cells. Incubating these peptides with human MNT-1 cells or 3D-reconstructed pigmented epidermis decreases pigmentation by impacting the maturation of melanosomes in fully pigmented organelles. This study highlights that peptides targeting the intracellular trafficking of melanocytes are candidate molecules to tune pigmentation in health and disease.


Asunto(s)
Complejo 1 de Proteína Adaptadora/metabolismo , Subunidades beta de Complejo de Proteína Adaptadora/metabolismo , Cinesinas/metabolismo , Melaninas/biosíntesis , Melanosomas/efectos de los fármacos , Péptidos/farmacología , Subunidades beta de Complejo de Proteína Adaptadora/química , Endosomas/metabolismo , Células HeLa , Humanos , Melanosomas/metabolismo , Transporte de Proteínas
20.
Traffic ; 16(2): 191-203, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25425525

RESUMEN

Chediak-Higashi syndrome (CHS) is caused by mutations in the gene encoding LYST protein, the function of which remains poorly understood. Prominent features of CHS include defective secretory lysosome exocytosis and the presence of enlarged, lysosome-like organelles in several cell types. In order to get further insight into the role of LYST in the biogenesis and exocytosis of cytotoxic granules, we analyzed cytotoxic T lymphocytes (CTLs) from patients with CHS. Using confocal microscopy and correlative light electron microscopy, we showed that the enlarged organelle in CTLs is a hybrid compartment that contains proteins components from recycling-late endosomes and lysosomes. Enlargement of cytotoxic granules results from the progressive clustering and then fusion of normal-sized endolysosomal organelles. At the immunological synapse (IS) in CHS CTLs, cytotoxic granules have limited motility and appear docked while nevertheless unable to degranulate. By increasing the expression of effectors of lytic granule exocytosis, such as Munc13-4, Rab27a and Slp3, in CHS CTLs, we were able to restore the dynamics and the secretory ability of cytotoxic granules at the IS. Our results indicate that LYST is involved in the trafficking of the effectors involved in exocytosis required for the terminal maturation of perforin-containing vesicles into secretory cytotoxic granules.


Asunto(s)
Síndrome de Chediak-Higashi/genética , Endosomas/metabolismo , Lisosomas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Células Cultivadas , Gránulos Citoplasmáticos/metabolismo , Exocitosis , Humanos , Sinapsis Inmunológicas/metabolismo , Proteínas de la Membrana/metabolismo , Mutación , Transporte de Proteínas , Vías Secretoras , Linfocitos T/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas rab27 de Unión a GTP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA