Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(28): e2206415119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35867768

RESUMEN

Chemotherapy-induced cognitive impairment (CICI) has emerged as a significant medical problem without therapeutic options. Using the platinum-based chemotherapy cisplatin to model CICI, we revealed robust elevations in the adenosine A2A receptor (A2AR) and its downstream effectors, cAMP and CREB, by cisplatin in the adult mouse hippocampus, a critical brain structure for learning and memory. Notably, A2AR inhibition by the Food and Drug Administration-approved A2AR antagonist KW-6002 prevented cisplatin-induced impairments in neural progenitor proliferation and dendrite morphogenesis of adult-born neurons, while improving memory and anxiety-like behavior, without affecting tumor growth or cisplatin's antitumor activity. Collectively, our study identifies A2AR signaling as a key pathway that can be therapeutically targeted to prevent cisplatin-induced cognitive impairments.


Asunto(s)
Antagonistas del Receptor de Adenosina A2 , Antineoplásicos , Deterioro Cognitivo Relacionado con la Quimioterapia , Cisplatino , Neurogénesis , Purinas , Receptor de Adenosina A2A , Antagonistas del Receptor de Adenosina A2/uso terapéutico , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Deterioro Cognitivo Relacionado con la Quimioterapia/prevención & control , Cisplatino/efectos adversos , Cognición/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/fisiología , Neurogénesis/efectos de los fármacos , Purinas/administración & dosificación , Purinas/uso terapéutico , Receptor de Adenosina A2A/metabolismo
2.
Phys Chem Chem Phys ; 26(2): 946-957, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38088085

RESUMEN

Inspired by the successful transfer of freestanding ultrathin films of SrTiO3 and BiFeO3 onto various substrates without any thickness limitation, in this study, using density functional theory (DFT), we assessed the structural stability of a group of two-dimensional perovskite-type materials which we call perovskenes. Specifically, we analyzed the stability of 2D SrTiO3, SrZrO3, BaTiO3, and BaZrO3 monolayers. Our simulations revealed that the 2D monolayers of SrTiO3, BaTiO3, and BaZrO3 are at least meta-stable, as confirmed by cohesive energy calculations, evaluation of elastic constants, and simulation of phonon dispersion modes. With this information, we proceeded to investigate the electronic, optical, and thermoelectric properties of these perovskenes. To gain insight into their promising applications, we investigated the electronic and optical properties of these 2D materials and found that they are wide bandgap semiconductors with significant absorption and reflection in the ultraviolet (UV) region of the electromagnetic field, suggesting them as promising materials for use in UV shielding applications. In addition, evaluating their thermoelectric factors revealed that these materials become better conductors of electricity and heat as the temperature rises. They can, hence, convert temperature gradients into electrical energy and transport electrical charges, which is beneficial for efficient power generation in thermoelectric devices. This work opens a new window for designing a novel family of 2D perovskite type materials termed perovskenes. The vast variety of different perovskite compounds and their variety of applications suggest deeper studies on the perovskenes materials for use in innovative technologies.

3.
Small ; : e2300744, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37058079

RESUMEN

Nanotechnology has emerged as a promising approach for the targeted delivery of therapeutic agents while improving their efficacy and safety. As a result, nanomaterial development for the selective targeting of cancers, with the possibility of treating off-target, detrimental sequelae caused by chemotherapy, is an important area of research. Breast and ovarian cancer are among the most common cancer types in women, and chemotherapy is an essential treatment modality for these diseases. However, chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy are common side effects that can affect breast and ovarian cancer survivors quality of life. Therefore, there is an urgent need to develop effective prevention and treatment strategies for these adverse effects. Nanoparticles (NPs) have extreme potential for enhancing therapeutic efficacy but require continued research to elucidate beneficial interventions for women cancer survivors. In short, nanotechnology-based approaches have emerged as promising strategies for preventing and treating chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy. NP-based drug delivery systems and therapeutics have shown potential for reducing the side effects of chemotherapeutics while improving drug efficacy. In this article, the latest nanotechnology approaches and their potential for the prevention and treatment of chemotherapy-induced neurotoxicity, neuropathy, and cardiomyopathy in breast and ovarian cancer survivors are discussed.

4.
Molecules ; 28(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37241926

RESUMEN

Gynura procumbens (Lour.) Merr. (Family: Asteraceae) is a tropical Asian medicinal plant found in Thailand, China, Malaysia, Indonesia, and Vietnam. It has long been utilized to treat a variety of health concerns in numerous countries around the world, such as renal discomfort, constipation, diabetes mellitus, rheumatism, and hypertension. The chemical investigation resulted in the isolation and characterization of six compounds from the methanol (MeOH) extract of the leaves of Gynura procumbens, which were identified as phytol (1), lupeol (2), stigmasterol (3), friedelanol acetate (4), ß-amyrin (5), and a mixture of stigmasterol and ß-sitosterol (6). In-depth investigations of the high-resolution 1H NMR and 13C NMR spectroscopic data from the isolated compounds, along with comparisons to previously published data, were used to clarify their structures. Among these, the occurrence of Compounds 1 and 4 in this plant are reported for the first time. The crude methanolic extract (CME) and its different partitionates, i.e., petroleum ether (PESF), chloroform (CSF), ethyl acetate (EASF), and aqueous (AQSF) soluble fractions, were subjected to antioxidant, cytotoxic, thrombolytic, and anti-diabetic activities. In a DPPH free radical scavenging assay, EASF showed the maximum activity, with an IC50 value of 10.78 µg/mL. On the other hand, CSF displayed the highest cytotoxic effect with an LC50 value of 1.94 µg/mL compared to 0.464 µg/mL for vincristine sulphate. In a thrombolytic assay, the crude methanolic extract exhibited the highest activity (63.77%) compared to standard streptokinase (70.78%). During the assay for anti-diabetic activity, the PESF showed 70.37% of glucose-lowering activity, where standard glibenclamide showed 63.24% of glucose-reducing activity.


Asunto(s)
Antineoplásicos , Asteraceae , Extractos Vegetales/química , Bangladesh , Estigmasterol , Fitoquímicos/farmacología , Asteraceae/química , Antioxidantes/farmacología , Antioxidantes/química , Descubrimiento de Drogas , Glucosa
5.
Mol Biol Rep ; 49(3): 1847-1856, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34837148

RESUMEN

BACKGROUND: Breast cancer (BC) is the most common disease in women and the leading cause of death from cancer globally. Epidemiological studies examined that nucleotide excision repair genes ERCC2 (rs13181) and ERCC4 (rs2276466) SNPs might increase cancer risk. Based on the previous investigation, this study was conducted to explore the correlation between these polymorphisms and BC susceptibility in Bangladeshi women. METHODS AND RESULTS: Between January 2019 and January 2020, 140 blood samples were collected from female patients histologically diagnosed with BC, and 111 female controls were recruited from non-cancer subjects. Genotyping was performed applying the PCR-RFLP method, and all statistical analyzes were conducted using SPSS, version 25.0. Comparison of characteristics and clinicopathological features between ERCC2 rs13181 and ERCC4 rs2276466 carriers and non-carriers showed no significant link with BC. Analysis of ERCC2 rs13181 with the risk of BC showed that the GG genotype and G allele carriers showed a fourfold and 1.78-fold higher risk (OR 4.00, P = 0.001 and OR 1.78, P = 0.002) that are statistically significant. In addition, the patients with combined TG+GG genotype revealed a 2.09-fold increased chance (OR 2.09, P = 0.020) BC development. Analysis of recessive model (GG vs. TT+TG) also depicted 2.74-times significantly higher risk (OR 2.74, P = 0.002). On the other hand, ERCC4 rs2276466 polymorphism did not show any significant association with BC (P > 0.05). CONCLUSIONS: Our findings show that ERCC2 rs13181 is linked to an elevated risk of BC. Our study also shows that ERCC4 rs2276466 polymorphism has no substantial risk of BC in the Bangladeshi population.


Asunto(s)
Neoplasias de la Mama , Pueblo Asiatico , Neoplasias de la Mama/epidemiología , Neoplasias de la Mama/genética , Proteínas de Unión al ADN , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Polimorfismo de Nucleótido Simple/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/genética
6.
BMC Complement Altern Med ; 19(1): 214, 2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31412852

RESUMEN

BACKGROUND: The present study evaluated the antinociceptive effect of the bark of Artocarpus lacucha, which is used for the treatment of stomachache, headache and boils in the traditional system of medicine. METHODS: The antinociceptive activity was investigated by the tail immersion, hot plate, acetic acid- & formalin-induced nociception and carrageenan-induced paw edema tests using a hydro-methanolic extract of A. lacucha bark. The plant extract was found to contain a substantial amount of phenolic compounds according to the total phenolic and flavonoid content assay. A phenolic metabolite, (+)-catechin, has been isolated using different chromatographic techniques. The compound was characterized with 1D and 2D NMR spectroscopic data. (+)-catechin, isolated from A. lacucha was assessed for antinociceptive effects swiss albino mice. Furthermore, the possible involvement of opioid receptors and ATP-sensitive K+ channel for the effect of the plant extract and (+)-catechin has been justified using naloxone and glibenclamide, respectively. RESULTS: Oral administration (p.o) of the plant extract (50-200 mg/Kg b.w.) resulted in significant thermal pain protection in the hot plate and tail immersion tests. The action of the plant extract was significantly antagonized by naloxone, a non-selective opioid antagonist, in the hot plate and tail immersion tests, which supports the involvement of opioid receptors. Both the plant extract and (+)-catechin, (50-200 mg/Kg b.w., p.o.) significantly diminished the acetic acid- & formalin-induced nociception, and carrageenan-induced paw edema. Glibenclamide, an ATP-sensitive K+ channel blocker, significantly reversed their effect in the acetic acid-induced writhing test which indicates the participation of ATP-sensitive K+ channel system. CONCLUSIONS: The investigation revealed potential central and peripheral antinociceptive effects of A. lacucha bark supports its applications in the traditional system of medicine.


Asunto(s)
Analgésicos/administración & dosificación , Artocarpus/química , Catequina/administración & dosificación , Edema/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Analgésicos/química , Analgésicos/aislamiento & purificación , Animales , Carragenina/efectos adversos , Catequina/análisis , Catequina/aislamiento & purificación , Edema/inducido químicamente , Humanos , Masculino , Ratones , Nocicepción/efectos de los fármacos , Dolor/tratamiento farmacológico , Extractos Vegetales/química
7.
Pak J Pharm Sci ; 30(5): 1759-1765, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29084699

RESUMEN

Gallbladders bile of three well known commercial fish of South Asia region named Muraenesox bagio (locally called bam), Pomadasys argenteus (dother) and Lobeo rohita (rohu) were analysed on GC-MS, after derivatising the bile alcohols and bile acids as trimethylsilyl ether and trimethylsilyl-methyl ester, respectively. Cholic acid (1) and chenodeoxycholic acid (2) were found as major bile acids in all three species. Major bile alcohol in these fish was cholesterol (4), which was not detected in freshwater specie (L. rohita). M. bagio was also found to contain 3αα,7α,12α-trihydroxy-23-cholesten-26-oic acid (3). Other bile acids and bile alcohols identified in L. rohita were allo deoxycholic acid (5), 12-oxo-3α-hydroxycholanic acid (6), 3α,7α,12α-trihydroxy-24-cholesten-26-oic acid (7), 5α- and 5ß-anhydrocyprinol (8 and 9, respectively) and 5ß-homocholane-3α,7α,12α-25-tetrol (10). Besides acting as emulsifying agent in the digestion process, in non-mammalian vertebrates, e.g., fish, reptiles, etc. the analytical and elucidative studies on the bile contents disclose the diversity in metabolic pathways of cholesterol and indicate the existence of molecular evolution in the basic C27 skeleton of cholesterol.


Asunto(s)
Ácidos y Sales Biliares/análisis , Colestanoles/análisis , Peces/metabolismo , Vesícula Biliar/química , Animales , Evolución Molecular , Cromatografía de Gases y Espectrometría de Masas , Estructura Molecular
8.
Pak J Pharm Sci ; 28(4): 1253-8, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26142515

RESUMEN

Bile from gallbladders of Arius platystomus (Singhara), Arius tenuispinis (Khagga), Pomadasys commersonni (Holoola) and Kishinoella tonggol (Dawan) were derivatised and analysed by GC-MS for identification of bile acids and bile alcohols. Cholic acid and Chenodeoxycholic acid were found as major bile acids in Arius platystomus, Arius tenuispinis and Pomadasys commersonni. Other bile acids identified in Arius platystomus were allochenodeoxycholic acid, allodeoxycholic acid, 3α,7α,12α-trihydroxy-24-methyl-5ß-cholestane-26-oic acid, and 3α,7α,12α, 24-tetrahydroxy-5α-cholestane-26-oic acid. Cholesterol was found as major bile alcohol in Arius platystomus, Arius tenuispinis and Pomadasys commersonni. Cholic acid was the major bile acid identified in the bile of Kishinoella tonggol while other bile acids included 3α,7α,12α-tridydroxy-5α-cholestanoic acid and 3α,7α,12α-tridydroxy-5ß-cholestanoic acid. Bile alcohol 5ß-cyprinol was present in significant amounts with 5ß-cholestane-3α,7α,12α,24-tetrol being the other contributors in the bile of Kishinoella tonggol.


Asunto(s)
Bilis/química , Bagres/metabolismo , Peces/metabolismo , Vesícula Biliar/química , Animales , Ácidos y Sales Biliares/análisis , Colestanoles/análisis , Cromatografía de Gases , Cromatografía de Gases y Espectrometría de Masas
9.
Mol Cancer Ther ; 23(5): 662-671, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38224566

RESUMEN

Radioresistance of melanoma brain metastases limits the clinical utility of conventionally fractionated brain radiation in this disease, and strategies to improve radiation response could have significant clinical impact. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is critical for repair of radiation-induced DNA damage, and inhibitors of this kinase can have potent effects on radiation sensitivity. In this study, the radiosensitizing effects of the DNA-PKcs inhibitor peposertib were evaluated in patient-derived xenografts of melanoma brain metastases (M12, M15, M27). In clonogenic survival assays, peposertib augmented radiation-induced killing of M12 cells at concentrations ≥100 nmol/L, and a minimum of 16 hours exposure allowed maximal sensitization. This information was integrated with pharmacokinetic modeling to define an optimal dosing regimen for peposertib of 125 mpk dosed just prior to and 7 hours after irradiation. Using this drug dosing regimen in combination with 2.5 Gy × 5 fractions of radiation, significant prolongation in median survival was observed in M12-eGFP (104%; P = 0.0015) and M15 (50%; P = 0.03), while more limited effects were seen in M27 (16%, P = 0.04). These data support the concept of developing peposertib as a radiosensitizer for brain metastases and provide a paradigm for integrating in vitro and pharmacokinetic data to define an optimal radiosensitizing regimen for potent DNA repair inhibitors.


Asunto(s)
Neoplasias Encefálicas , Proteína Quinasa Activada por ADN , Melanoma , Fármacos Sensibilizantes a Radiaciones , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Humanos , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/radioterapia , Ratones , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacocinética , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/patología , Línea Celular Tumoral , Sulfonas/farmacología , Femenino , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico
10.
Front Mol Neurosci ; 16: 1295991, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38095013

RESUMEN

Chemobrain is a condition that negatively affects cognition in cancer patients undergoing active chemotherapy, as well as following chemotherapy cessation. Chemobrain is also known as chemotherapy-induced cognitive impairment (CICI) and has emerged as a significant medical contingency. There is no therapy to ameliorate this condition, hence identification of novel therapeutic strategies to prevent CICI is of great interest to cancer survivors. Utilizing the platinum-based chemotherapy cisplatin in an investigative approach for CICI, we identified increased expression of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) in the adult mouse hippocampus, and in human cortical neuron cultures derived from induced pluripotent stem cells (iPSCs). Notably, administration of NS398, a selective COX-2 inhibitor, prevented CICI in vivo without negatively affecting the antitumor efficacy of cisplatin or potentiating tumor growth. Given that dysfunctional mitochondrial bioenergetics plays a prominent role in CICI, we explored the effects of NS398 in cisplatin-induced defects in human cortical mitochondria. We found that cisplatin significantly reduces mitochondrial membrane potential (MMP), increases matrix swelling, causes loss of cristae membrane integrity, impairs ATP production, as well as decreases cell viability and dendrite outgrowth. Pretreatment with NS398 in human cortical neurons attenuated mitochondrial dysfunction caused by cisplatin, while improving cell survival and neurite morphogenesis. These results suggest that aberrant COX-2 inflammatory pathways may contribute in cisplatin-induced mitochondrial damage and cognitive impairments. Therefore, COX-2 signaling may represent a viable therapeutic approach to improve the quality of life for cancer survivors experiencing CICI.

11.
Brain Plast ; 8(2): 143-152, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36721392

RESUMEN

Background: Chemotherapy-induced cognitive impairment (CICI) is a neurotoxic side effect of chemotherapy that has yet to have an effective treatment. Objective: Using cisplatin, a platinum-based chemotherapy together with excitatory cortical neurons derived from human induced pluripotent cells (iPSCs) to model of CICI, our recent study demonstrated that dysregulation of brain NAD+ metabolism contributes to cisplatin-induced impairments in neurogenesis and cognitive function, which was prevented by administration of the NAD+ precursor, nicotinamide mononucleotide (NMN). However, it remains unclear how cisplatin causes neurogenic dysfunction and the mechanism by which NMN prevents cisplatin-induced cognitive impairment. Given that mitochondrial dysfunction is thought to play a prominent role in age-related neurodegenerative disease and chemotherapy-induced neurotoxicity, we sought to explore if NMN prevents chemotherapy-related neurotoxicity by attenuating cisplatin-induced mitochondrial damage. Results: We demonstrate that cisplatin induces neuronal DNA damage, increases generation of mitochondrial reactive oxygen species (ROS) and decreases ATP production, all of which are indicative of oxidative DNA damage and mitochondrial functional defects. Ultrastructural analysis revealed that cisplatin caused loss of cristae membrane integrity and matrix swelling in human cortical neurons. Notably, pretreatment with NMN prevents cisplatin-induced defects in mitochondria of human cortical neurons. Conclusion: Our results suggest that increased mitochondrial oxidative stress and functional defects play key roles in cisplatin-induced neurotoxicity. Thus, NMN may be an effective therapeutic strategy to prevent cisplatin-induced deleterious effects on mitochondria, making this organelle a key factor in amelioration of cisplatin-induced cognitive impairments.

12.
J Ethnopharmacol ; 293: 115245, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35367330

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Peptic ulcer disease (PUD) ranks top among the most prominent gastrointestinal problems prevalent around the world. Long-term use of non-steroidal anti-inflammatory drugs, pathogenic infection by Helicobacter pylori, imbalances between gastrointestinal regulatory factors and pathological hyperacidity are major contributors towards the development of peptic ulcers. Although synthetic drugs of multiple pharmacological classes are abundantly available, inadequacy of such agents in ensuring complete recovery in not uncommon. Therefore, pharmacological explorations of herbal products including plant extracts and their respective isolated phytoconstituents, for potential gastroprotective and antiulcer properties, are regular practice among the scientific community. Moreover, the historical preferences of a significant share of world population towards herbal-based medication over modern synthetic drugs also contribute significantly to such endeavors. AIM OF THE REVIEW: This review has endeavored to present ethnomedicinal and pharmacological prospects of a significant number of authenticated plant species in terms of their capacity to exert gastroprotection and antiulcer activities both in vitro and in vivo. The information delineated along the way was further subjected to critical analysis to ascertain the possible future prospects of such findings into designing plant-derived products in future for the treatment of peptic ulcer. MATERIALS AND METHODS: Electronic version of prominent bibliographic databases, including Google Scholar, PubMed, Scopus, ScienceDirect, Wiley Online Library, SpringerLink, Web of Science, and MEDLINE were explored extensively for the identification and compilation of relevant information. The plant names and respective family names were verified through the Plant List (version 1.1) and World Flora Online 2021. All relevant chemical structures were verified through PubChem and SciFinder databases and illustrated with ChemDraw Ultra 12.0. RESULTS: A colossal number of 97 plant species categorized under 58 diverse plant families have been discussed in the review for their gastroprotective and antiulcer properties. In vivo illustrations of the pharmacological properties were achieved for almost all the species under consideration. 29 individual phytoconstituents from these sources were also characterized with similar pharmacological potentials. Majority of the plant extracts as well as their constituents were found to exert their gastroprotective effects through antioxidative pathway featuring both enzymatic and nonenzymatic mechanism. Moreover, active inhibition of acid secretion, upregulation of gastroprotective mediators and downregulation of pro-inflammatory cytokines, were also associated with a prominent number of plants or products thereof. CONCLUSIONS: Comparative evaluations of the plant sources for their antiulcer activities, both as individual and as combination formulations, are necessary to be conducted in human subjects under properly regulated clinical conditions. Moreover, the efficacy and safety of such products should also be evaluated against those of the currently available treatment options. This will further facilitate in ascertaining their suitability and superiority, if any, in the treatment of peptic ulcer diseases. Implementation of these endeavors may eventually lead to development of more efficient treatment options in the future.


Asunto(s)
Úlcera Péptica , Plantas Medicinales , Drogas Sintéticas , Etnofarmacología , Humanos , Medicina Tradicional , Úlcera Péptica/tratamiento farmacológico , Fitoquímicos/farmacología , Fitoterapia , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
13.
J Ethnopharmacol ; 271: 113834, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33465439

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Gynura (Compositae) includes around 46 species and is native to the tropical regions of Southeast Asia, Africa and Australia. Many species within this genus are used in ethnomedicine to treat various disorders including skin diseases, injuries, ulcers, wounds, burns, sores, scalds, as well as for the management of diabetes, hypertension, hyperlipidemia, constipation, rheumatism, bronchitis and inflammation. AIM OF THE REVIEW: This review is an attempt to provide scientific information regarding the ethnopharmacology, phytochemistry, pharmacological and toxicological profiles of Gynura species along with the nomenclature, distribution, taxonomy and botanical features of the genus. A critical analysis has been undertaken to understand the current and future pharmaceutical prospects of the genus. MATERIALS & METHODS: Several electronic databases, including Google scholar, PubMed, Web of Science, Scopus, ScienceDirect, SpringerLink, Semantic Scholar, MEDLINE and CNKI Scholar, were explored as information sources. The Plant List Index was used for taxonomical authentications. SciFinder and PubChem assisted in the verification of chemical structures. RESULTS: A large number of phytochemical analyses on Gynura have revealed the presence of around 342 phytoconstituents including pyrrolizidine alkaloids, phenolic compounds, chromanones, phenylpropanoid glycosides, flavonoids, flavonoid glycosides, steroids, steroidal glycosides, cerebrosides, carotenoids, triterpenes, mono- and sesquiterpenes, norisoprenoids, oligosaccharides, polysaccharides and proteins. Several in vitro and in vivo studies have demonstrated the pharmacological potential of Gynura species, including antidiabetic, anti-oxidant, anti-inflammatory, antimicrobial, antihypertensive and anticancer activities. Although the presence of pyrrolizidine alkaloids within a few species has been associated with possible hepatotoxicity, most of the common species have a good safety profile. CONCLUSIONS: The importance of the genus Gynura both as a prominent contributor in ethnomedicinal systems as well as a source of promising bioactive molecules is evident. Only about one fourth of Gynura species have been studied so far. This review aims to provide some scientific basis for future endeavors, including in-depth biological and chemical investigations into already studied species as well as other lesser known species of Gynura.


Asunto(s)
Asteraceae/química , Medicina Tradicional , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , África , Animales , Asia Sudoriental , Asteraceae/clasificación , Australia , Humanos , Fitoquímicos/efectos adversos , Fitoquímicos/uso terapéutico , Extractos Vegetales/efectos adversos , Extractos Vegetales/uso terapéutico
14.
Cancer Res ; 81(13): 3727-3737, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33771896

RESUMEN

Chemotherapy-induced cognitive impairment (CICI) is often reported as a neurotoxic side effect of chemotherapy. Although CICI has emerged as a significant medical problem, meaningful treatments are not currently available due to a lack of mechanistic understanding underlying CICI pathophysiology. Using the platinum-based chemotherapy cisplatin as a model for CICI, we show here that cisplatin suppresses nicotinamide adenine dinucleotide (NAD+) levels in the adult female mouse brain in vivo and in human cortical neurons derived from induced pluripotent stem cells in vitro. Increasing NAD+ levels through nicotinamide mononucleotide (NMN) administration prevented cisplatin-induced abnormalities in neural progenitor proliferation, neuronal morphogenesis, and cognitive function without affecting tumor growth and antitumor efficacy of cisplatin. Mechanistically, cisplatin inhibited expression of the NAD+ biosynthesis rate-limiting enzyme nicotinamide phosphoribosyl transferase (Nampt). Selective restoration of Nampt expression in adult-born neurons was sufficient to prevent cisplatin-induced defects in dendrite morphogenesis and memory function. Taken together, our findings suggest that aberrant Nampt-mediated NAD+ metabolic pathways may be a key contributor in cisplatin-induced neurogenic impairments, thus causally leading to memory dysfunction. Therefore, increasing NAD+ levels could represent a promising and safe therapeutic strategy for cisplatin-related neurotoxicity. SIGNIFICANCE: Increasing NAD+ through NMN supplementation offers a potential therapeutic strategy to safely prevent cisplatin-induced cognitive impairments, thus providing hope for improved quality of life in cancer survivors. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/13/3727/F1.large.jpg.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Cisplatino/toxicidad , Disfunción Cognitiva/prevención & control , Fármacos Neuroprotectores/farmacología , Mononucleótido de Nicotinamida/farmacología , Animales , Antineoplásicos/toxicidad , Apoptosis , Neoplasias de la Mama/patología , Proliferación Celular , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/patología , Femenino , Humanos , Ratones , Ratones SCID , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
J Infect Dev Ctries ; 14(8): 924-928, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32903238

RESUMEN

INTRODUCTION: The persistent increase of resistance to existing antimalarials underscores the needs for new drugs. Historically, most of the successful antimalarial are derived from plants. The leaves of the S. cymosum is one of the plant materials used by traditional healers in malaria-endemic areas in Bangladesh for treatment of malaria. Here, we investigated the crude extract and its fractions against chloroquine (CQ)-sensitive 3D7, CQ-resistant Dd2, and artemisinin (ART)-resistant IPC 4912 Mondulkiri strains of Plasmodium falciparum. METHODOLOGY: The antimalarial activities were tested using HRP II based in-vitro antimalarial drug sensitivity ELISA described by WWARN and half inhibitory concentrations (IC50) were calculated by non-linear regression analysis using GraphaPad Prism. The cytotoxicity of the crude methanolic extract was assessed using the MTT assay on Vero cell line. RESULTS: The methanolic crude extract revealed promising activity against 3D7 (IC50 6.28 µg/mL), Dd2 (IC50 13.42 µg/mL), and moderate activity against IPC 4912 Mondulkiri (IC50 17.47 µg/mL). Among the fractionated portions, the chloroform fraction revealed highest activity against IPC 4912 Mondulkiri (IC50 1.65 µg/mL) followed by Dd2 (1.73 µg/mL) and 3D7 (2.39 µg/mL). The crude methanolic extract also demonstrated good selectivity with the selectivity indices of > 15.92, > 7.45, and > 6.91 against 3D7, Dd2, and IPC 4912, respectively when tested against Vero cell line. CONCLUSIONS: This is the first report on S. cymosum for its putative antimalarial activity, and is imperative to go for further phytochemical analyses in order to investigate possible novel antimalarial drug compound(s).


Asunto(s)
Antimaláricos/farmacología , Extractos Vegetales/farmacología , Plantas Medicinales/química , Plasmodium falciparum/efectos de los fármacos , Syzygium/química , Animales , Antimaláricos/toxicidad , Bangladesh , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Resistencia a Medicamentos/efectos de los fármacos , Pruebas de Sensibilidad Parasitaria , Extractos Vegetales/toxicidad , Células Vero
16.
J Cardiopulm Rehabil Prev ; 40(1): 29-34, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31714393

RESUMEN

PURPOSE: Cardiovascular disease is the leading cause of mortality and morbidity in lower-middle income countries (LMICs), including Bangladesh. Cardiac rehabilitation (CR) as part of secondary prevention of cardiovascular disease has been shown to reduce mortality and morbidity and improve quality of life and exercise capacity. However, to date, very few controlled trials of CR have been conducted in LMICs. METHODS: A quasi-randomized controlled trial comparing home-based CR plus usual care with usual care alone was undertaken with patients following coronary artery bypass graft surgery. Participants in the CR group received an in-hospital CR class and were introduced to a locally developed educational booklet with details of a home-based exercise program and then received monthly telephone calls for 12 mo. Primary outcomes were coronary heart disease (CHD) risk factors, health-related quality of life (HRQOL), and mental well-being. Maximal oxygen uptake as a measure of exercise capacity was a secondary outcome. RESULTS: In total, 142 of 148 eligible participants took part in the trial (96%); 71 in each group. At 12-mo follow-up, 61 patients (86%) in the CR group and 40 (56%) in the usual care group provided complete outcome data. Greater reductions in CHD risk factors and improvements in HRQOL, mental well-being, and exercise capacity were seen for the CR group compared with the usual care group. CONCLUSIONS: In the context of a single-center LMIC setting, this study demonstrated the feasibility of home-based CR programs and offers a model of service delivery that could be replicated on a larger scale.


Asunto(s)
Rehabilitación Cardiaca/métodos , Terapia por Ejercicio/métodos , Prevención Secundaria/métodos , Telemedicina/métodos , Adulto , Anciano , Bangladesh , Países en Desarrollo , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pobreza , Calidad de Vida
17.
Bangladesh Med Res Counc Bull ; 35(3): 84-90, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20922910

RESUMEN

The present study describes the ethnobotanical, phytochemical, and toxicological evaluations of Xanthium strumarium L. growing in Bangladesh. In toxicity evaluation on rats, the methanol extract of seedlings showed mortality, while both seedling and mature plant extracts raised the serum alanine transaminase and aspartate transaminase values and produced significant abnormalities in the histopathology of liver and kidney of rats. On the other hand, the aqueous soluble fraction of methanol extract of mature plant (LC50 = 0.352 microg/mL) and methanol crude extract of seedlings (LC50 = 0.656 microg/mL) demonstrated significant toxicity in the brine shrimp lethality bioassay. A total of four compounds were purified and characterized as stigmasterol (1), 11-hydroxy-11-carboxy-4-oxo-1(5),2(Z)-xanthadien-12,8-olide (2), daucosterol (3) and lasidiol-10-anisate (4). The present study suggests that X. strumarium is toxic to animal.


Asunto(s)
Extractos Vegetales/química , Extractos Vegetales/toxicidad , Xanthium/química , Animales , Bangladesh , Etnobotánica , Femenino , Masculino , Ratas , Ratas Long-Evans
18.
Artículo en Inglés | MEDLINE | ID: mdl-31770097

RESUMEN

Background Commelina benghalensis Linn. (Family: Commelinaceae) is a common weed available in Bangladesh with several uses in traditional medicine. However, the chemical profile of this medicinal plant is scarce in relation to its medicinal uses. The aerial parts of this plant have been investigated for the isolation of secondary metabolites and evaluation of the biological activities. Methods Major phytochemical groups were analyzed using chromogenic reagents, whereas n-hexane soluble fractionates of the methanol extract were subjected to 1H nuclear magnetic resonance (NMR) spectroscopic analysis. The antioxidant property of the obtained compounds was evaluated using 1,1-diphenyl-2-picryl-hydrazyl (DPPH). Results Dammara-12-en-3-one (CB-1), stigmasterol (CB-2) and 3 (2,3,4,5,6-pentahydroxy)-cinnamoyl dammara-12-ene (CB-3) were isolated from the n-hexane fractionate of methanol extract of C. benghalensis. In the study of DPPH radical scavenging activity, IC50 values were predicted to be 790.18, 4186.94 and 2001.16 µg/mL for CB-1, CB-2 and CB-3, respectively, whereas standard ascorbic acid showed IC50 at 1.26 µg/mL. Conclusions Two new dammarane-type triterpene (CB-1 and CB-3) and one phytosterol (CB-2) were identified in C. benghalensis with mild antioxidant property.


Asunto(s)
Antioxidantes/química , Commelina/química , Fitosteroles/química , Terpenos/química , Ácido Ascórbico/química , Compuestos de Bifenilo/química , Hexanos/química , Fitoquímicos/química , Extractos Vegetales/química , Plantas Medicinales/química , Triterpenos/química , Damaranos
19.
Neuropharmacology ; 102: 174-85, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26586023

RESUMEN

Previous studies demonstrated that prenatal exposure to ethanol interferes with embryonic and fetal development, and causes abnormal neurodevelopment. Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid highly enriched in the brain, was shown to be essential for proper brain development and function. Recently, we found that N-docosahexenoyethanolamine (synaptamide), an endogenous metabolite of DHA, is a potent PKA-dependent neurogenic factor for neural stem cell (NSC) differentiation. In this study, we demonstrate that ethanol at pharmacologically relevant concentrations downregulates cAMP signaling in NSC and impairs neurogenic differentiation. In contrast, synaptamide reverses ethanol-impaired NSC neurogenic differentiation through counter-acting on the cAMP production system. NSC exposure to ethanol (25-50 mM) for 4 days dose-dependently decreased the number of Tuj-1 positive neurons and PKA/CREB phosphorylation with a concomitant reduction of cellular cAMP. Ethanol-induced cAMP reduction was accompanied by the inhibition of G-protein activation and expression of adenylyl cyclase (AC) 7 and AC8, as well as PDE4 upregulation. In contrast to ethanol, synaptamide increased cAMP production, GTPγS binding, and expression of AC7 and AC8 isoforms in a cAMP-dependent manner, offsetting the ethanol-induced impairment in neurogenic differentiation. These results indicate that synaptamide can reduce ethanol-induced impairment of neuronal differentiation by counter-affecting shared targets in G-protein coupled receptor (GPCR)/cAMP signaling. The synaptamide-mediated mechanism observed in this study may offer a possible avenue for ameliorating the adverse impact of fetal alcohol exposure on neurodevelopment.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Etanol/farmacología , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Animales , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
20.
Adv Neurobiol ; 12: 355-65, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27651263

RESUMEN

Oxidative stress in the brain is the major cause of neurodegenerative disorders, including Alzheimer's, Parkinson's, Huntington's, and Creutzfeldt-Jakob diseases or amyotrophic lateral sclerosis. Under conditions of oxidative stress, the production of highly reactive oxygen species (ROS) overwhelms antioxidant defenses, resulting in the modification of macromolecules and their deposition in neuronal cell tissues. ROS plays an important role in neuronal cell death that they generate reactive aldehydes from membrane lipid peroxidation. Several neuronal diseases are associated with increased accumulation of abnormal protein adducts of reactive aldehydes, which mediate oxidative stress-linked pathological events, including cell growth inhibition and apoptosis induction. Combining findings on neurodegeneration and oxidative stress in Drosophila with studies on the metabolic characteristics of the human enzyme CBR1, it is clear now that CBR1 has a potential physiological role of neuroprotection in humans. Several studies suggest that CBR1 represents a significant pathway for the detoxification of reactive aldehydes derived from lipid peroxidation and that CBR1 in humans is essential for neuronal cell survival and to confer protection against oxidative stress-induced brain degeneration. Recently, it was discovered that HIF1alpha, AP-1, and Nrf2 could all regulate CBR1 at the transcriptional level. Nrf2 is known to regulate the transcription of antioxidant enzymes, and CBR1 functions as an antioxidant enzyme, suggesting that transcriptional regulation of CBR1 is a major contributor to the control of oxidative stress in neurodegeneration.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Humanos , Peroxidación de Lípido , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Enfermedades Neurodegenerativas/enzimología , Enfermedades Neurodegenerativas/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA