Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cancer ; 23(1): 9, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195537

RESUMEN

The CRISPR system is a revolutionary genome editing tool that has the potential to revolutionize the field of cancer research and therapy. The ability to precisely target and edit specific genetic mutations that drive the growth and spread of tumors has opened up new possibilities for the development of more effective and personalized cancer treatments. In this review, we will discuss the different CRISPR-based strategies that have been proposed for cancer therapy, including inactivating genes that drive tumor growth, enhancing the immune response to cancer cells, repairing genetic mutations that cause cancer, and delivering cancer-killing molecules directly to tumor cells. We will also summarize the current state of preclinical studies and clinical trials of CRISPR-based cancer therapy, highlighting the most promising results and the challenges that still need to be overcome. Safety and delivery are also important challenges for CRISPR-based cancer therapy to become a viable clinical option. We will discuss the challenges and limitations that need to be overcome, such as off-target effects, safety, and delivery to the tumor site. Finally, we will provide an overview of the current challenges and opportunities in the field of CRISPR-based cancer therapy and discuss future directions for research and development. The CRISPR system has the potential to change the landscape of cancer research, and this review aims to provide an overview of the current state of the field and the challenges that need to be overcome to realize this potential.


Asunto(s)
Edición Génica , Neoplasias , Humanos , Mutación , Neoplasias/genética , Neoplasias/terapia
2.
J Cell Mol Med ; 27(18): 2756-2769, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37581480

RESUMEN

Considering the unfavourable response of breast cancer (BC) to treatment, we assessed the therapeutic potential hesperidin in mice bearing 4T1 BC tumours. Anti-tumour effects were assessed by measuring pathologic complete response (pCR), survival analysis, immunohistochemistry for E-cadherin, VEGF, MMP9, MMP2 and Ki-67, serum measurement of IFNγ and IL-4, and gene expression analysis of CD105, VEGFa, VEGFR2 and COX2. Survival of tumour-bearing mice was the highest in mice receiving a combination of hesperidin and doxorubicin (Dox) (80%) compared to the normal saline (43%), hesperidin 5 (54%), 10 (55.5%), 10 (60.5%) and 40 (66%) mg/kg, and 10 mg/kg Dox-treated (73%) groups (p < 0.0001 for all). Compared to the normal saline group, there was a significant elevation in IFNγ level in the animals receiving 20 (p = 0.0026) and 40 (p < 0.001) mg/kg hesperidin, 10 mg/kg Dox (p < 0.001), and combined hesperidin (20 mg/kg) and Dox (10 mg/kg) (p < 0.001). A significant reduction in the gene expression of CD 105 (p = 0.0106), VEGFa (p < 0.0001), VEGFR2 (p < 0.0001), and Cox2 (p = 0.034) and a significant higher pCR score (p = 0.006) were noticed in mice treated with 10 mg/kg Dox + 20 mg/kg hesperidin compared to those treated with 10 mg/kg Dox alone. Immunohistochemical staining showed significant reductions in Ki-67 (p < 0.001) and VEGF (p < 0.001) and a significant elevation in E-cadherin (p = 0.005) in the 10 mg/kg Dox + 20 mg/kg treatment group than in 10 mg/kg Dox alone group. Hesperidin can be considered as a potentially suitable anti-cancer agent for BC that can synergize with other chemotherapeutics.


Asunto(s)
Hesperidina , Neoplasias , Ratones , Animales , Hesperidina/farmacología , Hesperidina/uso terapéutico , Ratones Endogámicos BALB C , Ciclooxigenasa 2 , Antígeno Ki-67 , Factor A de Crecimiento Endotelial Vascular/genética , Solución Salina , Doxorrubicina/farmacología , Cadherinas , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico
3.
Mol Cancer ; 22(1): 189, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017433

RESUMEN

The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.


Asunto(s)
Células Madre Pluripotentes Inducidas , Neoplasias , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular , Carcinogénesis/metabolismo , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo
4.
Pharmacol Res ; 190: 106732, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36931542

RESUMEN

High mobility group A 2 (HMGA2) is a protein that modulates the structure of chromatin in the nucleus. Importantly, aberrant expression of HMGA2 occurs during carcinogenesis, and this protein is an upstream mediator of cancer hallmarks including evasion of apoptosis, proliferation, invasion, metastasis, and therapy resistance. HMGA2 targets critical signaling pathways such as Wnt/ß-catenin and mTOR in cancer cells. Therefore, suppression of HMGA2 function notably decreases cancer progression and improves outcome in patients. As HMGA2 is mainly oncogenic, targeting expression by non-coding RNAs (ncRNAs) is crucial to take into consideration since it affects HMGA2 function. MicroRNAs (miRNAs) belong to ncRNAs and are master regulators of vital cell processes, which affect all aspects of cancer hallmarks. Long ncRNAs (lncRNAs) and circular RNAs (circRNAs), other members of ncRNAs, are upstream mediators of miRNAs. The current review intends to discuss the importance of the miRNA/HMGA2 axis in modulation of various types of cancer, and mentions lncRNAs and circRNAs, which regulate this axis as upstream mediators. Finally, we discuss the effect of miRNAs and HMGA2 interactions on the response of cancer cells to therapy. Regarding the critical role of HMGA2 in regulation of critical signaling pathways in cancer cells, and considering the confirmed interaction between HMGA2 and one of the master regulators of cancer, miRNAs, targeting miRNA/HMGA2 axis in cancer therapy is promising and this could be the subject of future clinical trial experiments.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Humanos , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , ARN Circular/genética , ARN Largo no Codificante/metabolismo , ARN no Traducido/genética , Proteína HMGA2/metabolismo
5.
Pharmacol Res ; 187: 106568, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36423787

RESUMEN

The field of non-coding RNA (ncRNA) has made significant progress in understanding the pathogenesis of diseases and has broadened our knowledge towards their targeting, especially in cancer therapy. ncRNAs are a large family of RNAs with microRNAs (miRNAs) being one kind of endogenous RNA which lack encoded proteins. By now, miRNAs have been well-coined in pathogenesis and development of cancer. The current review focuses on the role of miR-21 in cancers and its association with tumor progression. miR-21 has both oncogenic and onco-suppressor functions and most of the experiments are in agreement with the tumor-promoting function of this miRNA. miR-21 primarily decreases PTEN expression to induce PI3K/Akt signaling in cancer progression. Overexpression of miR-21 inhibits apoptosis and is vital for inducing pro-survival autophagy. miR-21 is vital for metabolic reprogramming and can induce glycolysis to enhance tumor progression. miR-21 stimulates EMT mechanisms and increases expression of MMP-2 and MMP-9 thereby elevating tumor metastasis. miR-21 is a target of anti-cancer agents such as curcumin and curcumol and its down-regulation impairs tumor progression. Upregulation of miR-21 results in cancer resistance to chemotherapy and radiotherapy. Increasing evidence has revealed the role of miR-21 as a biomarker as it is present in both the serum and exosomes making them beneficial biomarkers for non-invasive diagnosis of cancer.


Asunto(s)
Carcinogénesis , MicroARNs , Neoplasias , Humanos , Carcinogénesis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica , Relevancia Clínica , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Fosfatidilinositol 3-Quinasas/metabolismo
6.
Pharmacol Res ; 187: 106553, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36400343

RESUMEN

Cancer progression results from activation of various signaling networks. Among these, PI3K/Akt signaling contributes to proliferation, invasion, and inhibition of apoptosis. Hepatocellular carcinoma (HCC) is a primary liver cancer with high incidence rate, especially in regions with high prevalence of viral hepatitis infection. Autoimmune disorders, diabetes mellitus, obesity, alcohol consumption, and inflammation can also lead to initiation and development of HCC. The treatment of HCC depends on the identification of oncogenic factors that lead tumor cells to develop resistance to therapy. The present review article focuses on the role of PI3K/Akt signaling in HCC progression. Activation of PI3K/Akt signaling promotes glucose uptake, favors glycolysis and increases tumor cell proliferation. It inhibits both apoptosis and autophagy while promoting HCC cell survival. PI3K/Akt stimulates epithelial-to-mesenchymal transition (EMT) and increases matrix-metalloproteinase (MMP) expression during HCC metastasis. In addition to increasing colony formation capacity and facilitating the spread of tumor cells, PI3K/Akt signaling stimulates angiogenesis. Therefore, silencing PI3K/Akt signaling prevents aggressive HCC cell behavior. Activation of PI3K/Akt signaling can confer drug resistance, particularly to sorafenib, and decreases the radio-sensitivity of HCC cells. Anti-cancer agents, like phytochemicals and small molecules can suppress PI3K/Akt signaling by limiting HCC progression. Being upregulated in tumor tissues and clinical samples, PI3K/Akt can also be used as a biomarker to predict patients' response to therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Hepáticas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
7.
Eur J Clin Pharmacol ; 79(3): 371-381, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36700997

RESUMEN

PURPOSE: Previous studies have shown that tetrahydrocannabinol (THC), the main psychoactive component of cannabis, can impair cognitive abilities. There is also some evidence that cannabidiol (CBD), the most abundant non-intoxicating constituent of cannabis, can attenuate these effects. The purpose of this study was to investigate the effects of THC:CBD oromucosal spray (with equal parts THC and CBD) on cognition compared with control conditions in human studies. METHODS: A systematic literature search was performed on four major bibliographic databases. Studies were included in the present review if they evaluated the cognitive effects of THC:CBD oromucosal spray compared with a control condition. RESULTS: Ten studies were identified (7 on patients with multiple sclerosis, 1 on those with Huntington, and 2 on healthy volunteers) with 510 participants in total. There was considerable heterogeneity among the studies in terms of dose and duration of administration. All studies have used an equal or nearly equal dose of THC and CBD. CONCLUSIONS: Although the results across studies were somewhat inconsistent, most evidence revealed that there is no significant difference between THC:CBD oromucosal spray and control treatments in terms of cognitive outcomes. However, more trials are needed with longer follow-up periods, and dose considerations, particularly comparing lower and higher doses of the spray.


Asunto(s)
Cannabidiol , Cannabis , Esclerosis Múltiple , Humanos , Dronabinol , Combinación de Medicamentos , Cognición
8.
J Appl Microbiol ; 134(9)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37669891

RESUMEN

AIMS: Umbelliprenin has shown promising biological activities, including immunoregulatory, anti-inflammatory, and anti-cancer effects. The present study investigated the growth inhibitory and apoptotic effects of umbelliprenin against Candida albicans in a BALB/c mice model of disseminated candidiasis. METHODS AND RESULTS: First, an antimicrobial assay via microdilution sensitivity test was performed. Then, twenty-five 6-week-old female BALB/c mice (20 ± 12 g) were divided into five groups of five mice, including one control group (no umbelliprenin treatment) and four experimental groups: C. albicans-infected mice treated with umbelliprenin at the doses of 5, 10, 20, and 40 mg kg -1. The brain, lung, kidney, spleen, and liver tissues were examined for fungal infection and histological lesions, and TUNEL staining was performed to assess apoptosis. The ß-1, 3-glucan synthase assay was used to evaluate enzymatic activity, and gene expression analysis was also performed to investigate the transcriptional changes of ERG11, CDR1, ALS1, and HWP1 genes. The MIC of umbelliprenin was 1.5 mg mL-1. Our results showed that at the 40 mg kg -1 dose, umbelliprenin was able to eradicate fungal infection in BALB/c mice. The percentage of apoptotic cells in umbelliprenin-treated groups increased in a concentration-dependent manner. Umbelliprenin (40 mg kg -1) also inhibited the expression of ß-1, 3-glucan synthase, and the genes involved in antifungal resistance (CDR1 and ERG11), as well as the expression of the genes encoding adhesins (ALS1 and HWP1). CONCLUSION: Our results showed that umbelliprenin could promote antifungal effects, partly via inducing apoptosis.


Asunto(s)
Antifúngicos , Candidiasis , Femenino , Animales , Ratones , Antifúngicos/farmacología , Candidiasis/tratamiento farmacológico , Candida albicans , Modelos Animales de Enfermedad
9.
Environ Res ; 237(Pt 2): 117027, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659647

RESUMEN

The latest advancements in oncology involves the creation of multifunctional nanostructures. The integration of nanoparticles into the realm of cancer therapy has brought about a transformative shift, revolutionizing the approach to addressing existing challenges and limitations in tumor elimination. This is particularly crucial in combating the emergence of resistance, which has significantly undermined the effectiveness of treatments like chemotherapy and radiotherapy. GO stands as a carbon-derived nanoparticle that is increasingly finding utility across diverse domains, notably in the realm of biomedicine. The utilization of GO nanostructures holds promise in the arena of oncology, enabling precise transportation of drugs and genetic material to targeted sites. GO nanomaterials offer the opportunity to enhance the pharmacokinetic behavior and bioavailability of drugs, with documented instances of these nanocarriers elevating drug accumulation at the tumor location. The GO nanostructures encapsulate genes, shielding them from degradation and facilitating their uptake within cancer cells, thereby promoting efficient gene silencing. The capability of GO to facilitate phototherapy has led to notable advancements in reducing tumor progression. By PDT and PTT combination, GO nanomaterials hold the capacity to diminish tumorigenesis. GO nanomaterials have the potential to trigger both cellular and innate immunity, making them promising contenders for vaccine development. Additionally, types of GO nanoparticles that respond to specific stimuli have been applied in cancer eradication, as well as for the purpose of cancer detection and biomarker diagnosis. Endocytosis serves as the mechanism through which GO nanomaterials are internalized. Given these advantages, the utilization of GO nanomaterials for tumor elimination comes highly recommended.

10.
Environ Res ; 238(Pt 1): 117087, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716390

RESUMEN

Hydrogels represent intricate three-dimensional polymeric structures, renowned for their compatibility with living systems and their ability to naturally degrade. These networks stand as promising and viable foundations for a range of biomedical uses. The practical feasibility of employing hydrogels in clinical trials has been well-demonstrated. Among the prevalent biomedical uses of hydrogels, a significant application arises in the context of wound healing. This intricate progression involves distinct phases of inflammation, proliferation, and remodeling, often triggered by trauma, skin injuries, and various diseases. Metabolic conditions like diabetes have the potential to give rise to persistent wounds, leading to delayed healing processes. This current review consolidates a collection of experiments focused on the utilization of hydrogels to expedite the recovery of wounds. Hydrogels have the capacity to improve the inflammatory conditions at the wound site, and they achieve this by diminishing levels of reactive oxygen species (ROS), thereby exhibiting antioxidant effects. Hydrogels have the potential to enhance the growth of fibroblasts and keratinocytes at the wound site. They also possess the capability to inhibit both Gram-positive and Gram-negative bacteria, effectively managing wounds infected by drug-resistant bacteria. Hydrogels can trigger angiogenesis and neovascularization processes, while also promoting the M2 polarization of macrophages, which in turn mitigates inflammation at the wound site. Intelligent and versatile hydrogels, encompassing features such as pH sensitivity, reactivity to reactive oxygen species (ROS), and responsiveness to light and temperature, have proven advantageous in expediting wound healing. Furthermore, hydrogels synthesized using environmentally friendly methods, characterized by high levels of biocompatibility and biodegradability, hold the potential for enhancing the wound healing process. Hydrogels can facilitate the controlled discharge of bioactive substances. More recently, there has been progress in the creation of conductive hydrogels, which, when subjected to electrical stimulation, contribute to the enhancement of wound healing. Diabetes mellitus, a metabolic disorder, leads to a slowdown in the wound healing process, often resulting in the formation of persistent wounds. Hydrogels have the capability to expedite the healing of diabetic wounds, facilitating the transition from the inflammatory phase to the proliferative stage. The current review sheds light on the biological functionalities of hydrogels, encompassing their role in modulating diverse mechanisms and cell types, including inflammation, oxidative stress, macrophages, and bacteriology. Additionally, this review emphasizes the significance of smart hydrogels with responsiveness to external stimuli, as well as conductive hydrogels for promoting wound healing. Lastly, the discussion delves into the advancement of environmentally friendly hydrogels with high biocompatibility, aimed at accelerating the wound healing process.


Asunto(s)
Diabetes Mellitus , Hidrogeles , Humanos , Hidrogeles/química , Hidrogeles/farmacología , Especies Reactivas de Oxígeno , Antibacterianos/farmacología , Medicina de Precisión , Bacterias Gramnegativas , Bacterias Grampositivas , Cicatrización de Heridas , Inflamación
11.
Environ Res ; 225: 115673, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36906270

RESUMEN

The application of nanoarchitectures in cancer therapy seems to be beneficial for the delivery of antitumor drugs. In recent years, attempts have been made to reverse drug resistance, one of the factors threatening the lives of cancer patients worldwide. Gold nanoparticles (GNPs) are metal nanostructures with a variety of advantageous properties, such as tunable size and shape, continuous release of chemicals, and simple surface modification. This review focuses on the application of GNPs for the delivery of chemotherapy agents in cancer therapy. Utilizing GNPs results in targeted delivery and increased intracellular accumulation. Besides, GNPs can provide a platform for the co-delivery of anticancer agents and genetic tools with chemotherapeutic compounds to exert a synergistic impact. Furthermore, GNPs can promote oxidative damage and apoptosis by triggering chemosensitivity. Due to their capacity for providing photothermal therapy, GNPs can enhance the cytotoxicity of chemotherapeutic agents against tumor cells. The pH-, redox-, and light-responsive GNPs are beneficial for drug release at the tumor site. For the selective targeting of cancer cells, surface modification of GNPs with ligands has been performed. In addition to improving cytotoxicity, GNPs can prevent the development of drug resistance in tumor cells by facilitating prolonged release and loading low concentrations of chemotherapeutics while maintaining their high antitumor activity. As described in this study, the clinical use of chemotherapeutic drug-loaded GNPs is contingent on enhancing their biocompatibility.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Neoplasias , Humanos , Oro/química , Nanopartículas del Metal/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Apoptosis , Neoplasias/tratamiento farmacológico , Resistencia a Medicamentos
12.
Environ Res ; 233: 116458, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37348629

RESUMEN

Colorectal cancer (CRC) ranks as the third most aggressive tumor globally, and it can be categorized into two forms: colitis-mediated CRC and sporadic CRC. The therapeutic approaches for CRC encompass surgical intervention, chemotherapy, and radiotherapy. However, even with the implementation of these techniques, the 5-year survival rate for metastatic CRC remains at a mere 12-14%. In the realm of CRC treatment, gene therapy has emerged as a novel therapeutic approach. Among the crucial molecular pathways that govern tumorigenesis, STAT3 plays a significant role. This pathway is subject to regulation by cytokines and growth factors. Once translocated into the nucleus, STAT3 influences the expression levels of factors associated with cell proliferation and metastasis. Literature suggests that the upregulation of STAT3 expression is observed as CRC cells progress towards metastatic stages. Consequently, elevated STAT3 levels serve as a significant determinant of poor prognosis and can be utilized as a diagnostic factor for cancer patients. The biological and malignant characteristics of CRC cells contribute to low survival rates in patients, as the upregulation of STAT3 prevents apoptosis and promotes pro-survival autophagy, thereby accelerating tumorigenesis. Furthermore, STAT3 plays a role in facilitating the proliferation of CRC cells through the stimulation of glycolysis and promoting metastasis via the induction of epithelial-mesenchymal transition (EMT). Notably, an intriguing observation is that the upregulation of STAT3 can mediate resistance to 5-fluorouracil, oxaliplatin, and other anti-cancer drugs. Moreover, the radio-sensitivity of CRC diminishes with increased STAT3 expression. Compounds such as curcumin, epigallocatechin gallate, and other anti-tumor agents exhibit the ability to suppress STAT3 and its associated pathways, thereby impeding tumorigenesis in CRC. Furthermore, it is worth noting that nanostructures have demonstrated anti-proliferative and anti-metastatic properties in CRC.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Transformación Celular Neoplásica , Apoptosis , Citocinas/metabolismo , Proliferación Celular , Línea Celular Tumoral , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
13.
Cell Mol Life Sci ; 79(11): 539, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36194371

RESUMEN

Breast cancer (BC) is one of the most common cancers in females and is responsible for the highest cancer-related deaths following lung cancer. The complex tumor microenvironment and the aggressive behavior, heterogenous nature, high proliferation rate, and ability to resist treatment are the most well-known features of BC. Accordingly, it is critical to find an effective therapeutic agent to overcome these deleterious features of BC. Resveratrol (RES) is a polyphenol and can be found in common foods, such as pistachios, peanuts, bilberries, blueberries, and grapes. It has been used as a therapeutic agent for various diseases, such as diabetes, cardiovascular diseases, inflammation, and cancer. The anticancer mechanisms of RES in regard to breast cancer include the inhibition of cell proliferation, and reduction of cell viability, invasion, and metastasis. In addition, the synergistic effects of RES in combination with other chemotherapeutic agents, such as docetaxel, paclitaxel, cisplatin, and/or doxorubicin may contribute to enhancing the anticancer properties of RES on BC cells. Although, it demonstrates promising therapeutic features, the low water solubility of RES limits its use, suggesting the use of delivery systems to improve its bioavailability. Several types of nano drug delivery systems have therefore been introduced as good candidates for RES delivery. Due to RES's promising potential as a chemopreventive and chemotherapeutic agent for BC, this review aims to explore the anticancer mechanisms of RES using the most up to date research and addresses the effects of using nanomaterials as delivery systems to improve the anticancer properties of RES.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Estilbenos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Neoplasias de la Mama/patología , Línea Celular Tumoral , Cisplatino/farmacología , Docetaxel , Doxorrubicina/farmacología , Femenino , Humanos , Paclitaxel , Polifenoles/farmacología , Resveratrol/farmacología , Resveratrol/uso terapéutico , Estilbenos/farmacología , Estilbenos/uso terapéutico , Microambiente Tumoral , Agua
14.
Cell Mol Biol Lett ; 28(1): 33, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37085753

RESUMEN

Hepatocellular carcinoma (HCC) is considered one of the greatest challenges to human life and is the most common form of liver cancer. Treatment of HCC depends on chemotherapy, radiotherapy, surgery, and immunotherapy, all of which have their own drawbacks, and patients may develop resistance to these therapies due to the aggressive behavior of HCC cells. New and effective therapies for HCC can be developed by targeting molecular signaling pathways. The expression of signal transducer and activator of transcription 3 (STAT3) in human cancer cells changes, and during cancer progression, the expression tends to increase. After induction of STAT3 signaling by growth factors and cytokines, STAT3 is phosphorylated and translocated to the nucleus to regulate cancer progression. The concept of the current review revolves around the expression and phosphorylation status of STAT3 in HCC, and studies show that the expression of STAT3 is high during the progression of HCC. This review addresses the function of STAT3 as an oncogenic factor in HCC, as STAT3 is able to prevent apoptosis and thus promote the progression of HCC. Moreover, STAT3 regulates both survival- and death-inducing autophagy in HCC and promotes cancer metastasis by inducing the epithelial-mesenchymal transition (EMT). In addition, upregulation of STAT3 is associated with the occurrence of chemoresistance and radioresistance in HCC. Specifically, non-protein-coding transcripts regulate STAT3 signaling in HCC, and their inhibition by antitumor agents may affect tumor progression. In this review, all these topics are discussed in detail to provide further insight into the role of STAT3 in tumorigenesis, treatment resistance, and pharmacological regulation of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Factor de Transcripción STAT3 , Humanos , Carcinogénesis/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Factor de Transcripción STAT3/metabolismo
15.
Chem Biodivers ; 20(11): e202301193, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37869899

RESUMEN

A series of [1,3,4] thiadiazolo[3,2-a]pyrimidine-6-carboxylate derivatives 4(a-n) have been designed and synthesized as inhibitors of acetylcholinesterase (AChE). Synthesizing of thiadiazolo[3,2-a] pyrimidines was carried out in a single step, one-pot reaction using aromatic aldehydes, ethyl acetoacetate and different derivatives of 1,3,4-thiadiazoles (with molar ratio of 1 : 2 : 1, respectively) in conjunction with the catalyst, anhydrous iron(III) chloride by a grinding method under solvent-free conditions at room temperature. The in-vitro studies exhibited good potency for inhibiting AChE comparable with donepezil as the reference drug. The best results were obtained by Ethyl 2-(4-nitroophenyl)-7-methyl-5-(pyridin-3-yl)-5H-[1,3,4]thiadiazolo[3,2-a]pyrimidine-6-carboxylate 4n with IC50 value of 0.082±0.001 µM which was comparable with AChE inhibitory effects of donepezil (IC50 =0.079 µM).


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Humanos , Inhibidores de la Colinesterasa/farmacología , Simulación del Acoplamiento Molecular , Donepezilo , Acetilcolinesterasa/metabolismo , Relación Estructura-Actividad , Teoría Funcional de la Densidad , Compuestos Férricos , Pirimidinas/farmacología , Estructura Molecular
16.
Pharmacol Res ; 182: 106311, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35716914

RESUMEN

Epithelial-to-mesenchymal transition (EMT) mechanism is responsible for metastasis of tumor cells and their spread to various organs and tissues of body, providing undesirable prognosis. In addition to migration, EMT increases stemness and mediates therapy resistance. Hence, pathways involved in EMT regulation should be highlighted. STAT3 is an oncogenic pathway that can elevate growth rate and migratory ability of cancer cells and induce drug resistance. The inhibition of STAT3 signaling impairs cancer progression and promotes chemotherapy-mediated cell death. Present review focuses on STAT3 and EMT interaction in modulating cancer migration. First of all, STAT3 is an upstream mediator of EMT and is able to induce EMT-mediated metastasis in brain tumors, thoracic cancers and gastrointestinal cancers. Therefore, STAT3 inhibition significantly suppresses cancer metastasis and improves prognosis of patients. EMT regulators such as ZEB1/2 proteins, TGF-ß, Twist, Snail and Slug are affected by STAT3 signaling to stimulate cancer migration and invasion. Different molecular pathways such as miRNAs, lncRNAs and circRNAs modulate STAT3/EMT axis. Furthermore, we discuss how STAT3 and EMT interaction affects therapy response of cancer cells. Finally, we demonstrate targeting STAT3/EMT axis by anti-tumor agents and clinical application of this axis for improving patient prognosis.


Asunto(s)
MicroARNs , Neoplasias , Línea Celular Tumoral , Movimiento Celular/fisiología , Transición Epitelial-Mesenquimal/fisiología , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Metástasis de la Neoplasia , Neoplasias/tratamiento farmacológico , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
17.
Biochem Genet ; 60(1): 1-23, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34181134

RESUMEN

miRNAs are evolutionarily conserved non-coding ribonucleic acids with a length of between 19 and 25 nucleotides. Because of their ability to regulate gene expression, miRNAs have an important function in the controlling of various biological processes, such as cell cycle, differentiation, proliferation, and apoptosis. Owing to the long-standing regulative potential of miRNAs in tumor-suppressive pathways, scholars have recently paid closer attention to the expression profile of miRNAs in various types of cancer. Melatonin, an indolic compound secreted from pineal gland and some peripheral tissues, has been considered as an effective anti-tumor hormone in a wide spectrum of cancers. Furthermore, it induces apoptosis, inhibits tumor metastasis and invasion, and also angiogenesis. A growing body of evidence indicates the effects of melatonin on miRNAs expression in broad spectrum of diseases, including cancer. Due to the long-term effects of the regulation of miRNAs expression, melatonin could be a promising therapeutic factor in the treatment of cancers via the regulation of miRNAs. Therefore, in this review, we will discuss the effects of melatonin on miRNAs expression in various types of cancers.


Asunto(s)
Melatonina , MicroARNs , Neoplasias , Apoptosis/genética , Humanos , Melatonina/farmacología , MicroARNs/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética
18.
Mol Biol Rep ; 48(3): 2909-2916, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33821440

RESUMEN

Chemotherapy is standard treatments for many malignancies. However, in most cases, this method is not able to induce apoptosis and in many cases, with cancer recurrence, leads to patient death. There are several procedure to control and suppress malignant cells, but among these methods, administration of É·-3 fatty acids and É·-6 fatty due to their destructive effects on cancer cells is more prominent. Many clinical studies have shown beneficial effects of É·-3 and É·-6 fatty acids in cardiovascular disorders, asthma, rheumatoid arthritis, osteoporosis and in most cancers such as colon, breast, prostate and other malignancies. Studies showed that polyunsaturated fatty acids (PUFAs) have a toxic effect on cancer cells. However, the exact mechanism of how É·- fatty acids affect cancer cells is still unknown. In this review alternative issues of malignancies co-treatments agents such as PUFAs have been studied. Also, the latest known PUFAs mechanisms on malignancies have been described.


Asunto(s)
Ácidos Grasos Insaturados/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ácidos Grasos Insaturados/farmacología , Humanos , Sistema Inmunológico/efectos de los fármacos , Neoplasias/inmunología
19.
J Perianesth Nurs ; 36(2): 179-186, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33303343

RESUMEN

PURPOSE: Pain control during and after breast surgery is still a challenging task. Dexmedetomidine (DEX) is considered as a sedative agent that is widely used perineurally or intravenously as an adjuvant in general anesthesia and critical care medicine practice. The aim of this study is to evaluate the efficacy of perineural DEX and intravenous (IV) DEX and their effects on postoperative complications in breast surgeries. DESIGN: Systematic review and meta-analysis. METHODS: The present study systematically reviewed all identified randomized controlled trials for efficacy and safety of IV and perineural use of DEX in breast surgeries. Databases were searched for articles published before October 2019. FINDINGS: Twelve trials were identified including 803 patients undergoing breast surgery. Although administration of IV DEX and its use with pectoral nerve (Pecs) block significantly postponed time for first analgesic request and decreased pain score at 1 and 12 hours after surgery, paravertebral use of DEX had no statistically significant effect. Pooled data about perineural DEX showed no significant effect on postoperative nausea and vomiting (PONV), whereas IV DEX significantly reduced PONV. Pooled analysis also showed that DEX administration did not significantly affect postoperative complications, such as postoperative itching, bradycardia, and pneumothorax in patients undergoing breast surgery. CONCLUSIONS: The results showed that unlike paravertebral DEX, both DEX use with Pecs blocks and IV DEX were effective in control of postoperative pain in patients undergoing breast surgeries. Unlike perineural DEX, IV DEX significantly reduced PONV.


Asunto(s)
Dexmedetomidina , Humanos , Hipnóticos y Sedantes , Manejo del Dolor , Dolor Postoperatorio/tratamiento farmacológico , Náusea y Vómito Posoperatorios
20.
J Cell Biochem ; 121(2): 1610-1622, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31535406

RESUMEN

The antineoplastic effects of 5-hydroxytryptamine (5-HT) receptor antagonists have been shown in previous studies. However, the exact underlying mechanisms mediating these antineoplastic effects are unclear. In the present study, we assessed the antineoplastic effects of tropisetron, a 5-HT receptor antagonist, in an experimental model of lung cancer in BALB/c mouse. Lewis lung carcinoma cell line was used to induce lung cancer. Mice were divided into four groups (n = 6) as follows: tumor-bearing mice + tropisetron (5 mg/kg intraperitoneally [IP]), tumor-bearing mice + tropisetron (10 mg/kg IP), tumor-bearing mice + saline, healthy mice + tropisetron (10 mg/kg). Tumor burden, interferon-γ (IFN-γ), interleukin (IL)-4, pathological response, Ki-67, and E-cadherin were assessed using enzyme-linked immunosorbent assay, and real-time polymerase chain reaction. Comet assay was used to assess DNA toxicity. Tropisetrone-treated animals (either 5 or 10 mg/kg) showed significantly lower tumor sizes at the day 24th after tumor induction. Tropisetron received animals also showed significantly higher levels of IFN-γ, E-cadherin, pathologic response, and necrotic cells compared to the saline-treated counterparts. In addition, the levels of IL-4, and Ki-67 were significantly lower in tropisetrone treated mice in comparison with control. Furthermore, tropisteron coadministration signifcantly reduced H2 O2 -induced DNA toxicity while treatment with tropisteron alone showed no adverse effect on DNA. Tropisetrone can be used as a potential antineoplastic drug in lung cancer. This agent can promote its antineoplastic effects in part through modulating inflammatory and proliferating markers.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma Pulmonar de Lewis/tratamiento farmacológico , Modelos Animales de Enfermedad , Antagonistas del Receptor de Serotonina 5-HT3/farmacología , Tropisetrón/farmacología , Animales , Progresión de la Enfermedad , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA