Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Development ; 149(7)2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35297995

RESUMEN

Establishing a functional circulatory system is required for post-implantation development during murine embryogenesis. Previous studies in loss-of-function mouse models showed that FOXO1, a Forkhead family transcription factor, is required for yolk sac (YS) vascular remodeling and survival beyond embryonic day (E) 11. Here, we demonstrate that at E8.25, loss of Foxo1 in Tie2-cre expressing cells resulted in increased sprouty 2 (Spry2) and Spry4 expression, reduced arterial gene expression and reduced Kdr (also known as Vegfr2 and Flk1) transcripts without affecting overall endothelial cell identity, survival or proliferation. Using a Dll4-BAC-nlacZ reporter line, we found that one of the earliest expressed arterial genes, delta like 4, is significantly reduced in Foxo1 mutant YS without being substantially affected in the embryo proper. We show that FOXO1 binds directly to previously identified Spry2 gene regulatory elements (GREs) and newly identified, evolutionarily conserved Spry4 GREs to repress their expression. Furthermore, overexpression of Spry4 in transient transgenic embryos largely recapitulates the reduced expression of arterial genes seen in conditional Foxo1 mutants. Together, these data reveal a novel role for FOXO1 as a key transcriptional repressor regulating both pre-flow arterial specification and subsequent vessel remodeling within the murine YS.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Remodelación Vascular , Saco Vitelino , Animales , Arterias , Embrión de Mamíferos/metabolismo , Células Endoteliales/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Ratones , Remodelación Vascular/genética , Saco Vitelino/metabolismo
2.
Mamm Genome ; 34(2): 156-165, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36595063

RESUMEN

Comprehensive detailed characterization of new mouse models can be challenging due to the individual focus involved in developing these models. Often models are engineered to test a specific hypothesis in a limited number of tissues, stages, and/or other contexts. Whether or not the model produces the desired phenotypes, phenotyping beyond the desired context can be extremely work intensive and these studies are often not undertaken. However, the general information resulting from broader phenotyping can be invaluable to the wider scientific community. The International Mouse Phenotyping Consortium (IMPC) and its subsidiaries, like the Knockout Mouse Project (KOMP), has made great strides in streamlining this process. In particular, the use of microCT has been an invaluable resource in examining internal organ systems throughout fetal/developmental stages. Here, we provide several novel vignettes demonstrating the utility of microCT in uncovering cardiac phenotypes both based on human disease correlations and those that are unpredicted.


Asunto(s)
Implantación del Embrión , Organogénesis , Ratones , Animales , Humanos , Ratones Noqueados , Microtomografía por Rayos X/métodos , Fenotipo , Imagenología Tridimensional/métodos
3.
Dev Biol ; 410(1): 86-97, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26688546

RESUMEN

The SMYD (SET and MYND domain) family of lysine methyltransferases harbor a unique structure in which the methyltransferase (SET) domain is intervened by a zinc finger protein-protein interaction MYND domain. SMYD proteins methylate both histone and non-histone substrates and participate in diverse biological processes including transcriptional regulation, DNA repair, proliferation and apoptosis. Smyd1 is unique among the five family members in that it is specifically expressed in striated muscles. Smyd1 is critical for development of the right ventricle in mice. In zebrafish, Smyd1 is necessary for sarcomerogenesis in fast-twitch muscles. Smyd1 is expressed in the skeletal muscle lineage throughout myogenesis and in mature myofibers, shuttling from nucleus to cytosol during myoblast differentiation. Because of this expression pattern, we hypothesized that Smyd1 plays multiple roles at different stages of myogenesis. To determine the role of Smyd1 in mammalian myogenesis, we conditionally eliminated Smyd1 from the skeletal muscle lineage at the myoblast stage using Myf5(cre). Deletion of Smyd1 impaired myoblast differentiation, resulted in fewer myofibers and decreased expression of muscle-specific genes. Muscular defects were temporally restricted to the second wave of myogenesis. Thus, in addition to the previously described functions for Smyd1 in heart development and skeletal muscle sarcomerogenesis, these results point to a novel role for Smyd1 in myoblast differentiation.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Desarrollo de Músculos , Proteínas Musculares/fisiología , Factores de Transcripción/fisiología , Animales , Diferenciación Celular , Células Cultivadas , Proteínas de Unión al ADN/análisis , Ratones , Fibras Musculares Esqueléticas , Proteínas Musculares/análisis , Mioblastos/citología , Factores de Transcripción/análisis
4.
Dev Biol ; 419(2): 229-236, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27671873

RESUMEN

In this work, we report the use of iodine-contrast microCT to perform high-throughput 3D morphological analysis of mouse embryos and neonates between embryonic day 8.5 to postnatal day 3, with high spatial resolution up to 3µm/voxel. We show that mouse embryos at early stages can be imaged either within extra embryonic tissues such as the yolk sac or the decidua without physically disturbing the embryos. This method enables a full, undisturbed analysis of embryo turning, allantois development, vitelline vessels remodeling, yolk sac and early placenta development, which provides increased insights into early embryonic lethality in mutant lines. Moreover, these methods are inexpensive, simple to learn and do not require substantial processing time, making them ideal for high throughput analysis of mouse mutants with embryonic and early postnatal lethality.


Asunto(s)
Desarrollo Embrionario , Imagenología Tridimensional/métodos , Ratones/embriología , Microtomografía por Rayos X/métodos , Animales , Animales Recién Nacidos , Medios de Contraste , Decidua/ultraestructura , Femenino , Genes Letales , Estudios de Asociación Genética , Edad Gestacional , Hidrogeles , Yodo , Fenotipo , Coloración y Etiquetado/métodos , Saco Vitelino/ultraestructura
5.
J Biol Chem ; 290(47): 28107-28119, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26396195

RESUMEN

Etv2 is an essential transcriptional regulator of hematoendothelial lineages during embryogenesis. Although Etv2 downstream targets have been identified, little is known regarding the upstream transcriptional regulation of Etv2 gene expression. In this study, we established a novel methodology that utilizes the differentiating ES cell and embryoid body system to define the modules and enhancers embedded within the Etv2 promoter. Using this system, we defined an autoactivating role for Etv2 that is mediated by two adjacent Ets motifs in the proximal promoter. In addition, we defined the role of VEGF/Flk1-Calcineurin-NFAT signaling cascade in the transcriptional regulation of Etv2. Furthermore, we defined an Etv2-Flt1-Flk1 cascade that serves as a negative feedback mechanism to regulate Etv2 gene expression. To complement and extend these studies, we demonstrated that the Flt1 null embryonic phenotype was partially rescued in the Etv2 conditional knockout background. In summary, these studies define upstream and downstream networks that serve as a transcriptional rheostat to regulate Etv2 gene expression.


Asunto(s)
Células de la Médula Ósea/citología , Endotelio/citología , Expresión Génica , Factores de Transcripción/genética , Animales , Calcineurina/metabolismo , Linaje de la Célula , Elementos de Facilitación Genéticos , Femenino , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/metabolismo , Regiones Promotoras Genéticas , Transducción de Señal , Transcripción Genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
6.
J Biol Chem ; 290(15): 9614-25, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25694434

RESUMEN

Mesoderm posterior 1 (Mesp1) is well recognized for its role in cardiac development, although it is expressed broadly in mesodermal lineages. We have previously demonstrated important roles for Mesp1 and Ets variant 2 (Etv2) during lineage specification, but their relationship has not been defined. This study reveals that Mesp1 binds to the proximal promoter and transactivates Etv2 gene expression via the CRE motif. We also demonstrate the protein-protein interaction between Mesp1 and cAMP-responsive element binding protein 1 (Creb1) in vitro and in vivo. Utilizing transgenesis, lineage tracing, flow cytometry, and immunostaining technologies, we define the lineage relationship between Mesp1- and Etv2-expressing cell populations. We observe that the majority of Etv2-EYFP(+) cells are derived from Mesp1-Cre(+) cells in both the embryo and yolk sac. Furthermore, we observe that the conditional deletion of Etv2, using a Mesp1-Cre transgenic strategy, results in vascular and hematopoietic defects similar to those observed in the global deletion of Etv2 and that it has embryonic lethality by embryonic day 9.5. In summary, our study supports the hypothesis that Mesp1 is a direct upstream transactivator of Etv2 during embryogenesis and that Creb1 is an important cofactor of Mesp1 in the transcriptional regulation of Etv2 gene expression.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Factores de Transcripción/genética , Activación Transcripcional , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Western Blotting , Línea Celular , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Células 3T3 NIH , Unión Proteica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 311(5): H1234-H1247, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27663768

RESUMEN

All terminally differentiated organs face two challenges, maintaining their cellular identity and restricting organ size. The molecular mechanisms responsible for these decisions are of critical importance to organismal development, and perturbations in their normal balance can lead to disease. A hallmark of heart failure, a condition affecting millions of people worldwide, is hypertrophic growth of cardiomyocytes. The various forms of heart failure in human and animal models share conserved transcriptome remodeling events that lead to expression of genes normally silenced in the healthy adult heart. However, the chromatin remodeling events that maintain cell and organ size are incompletely understood; insights into these mechanisms could provide new targets for heart failure therapy. Using a quantitative proteomics approach to identify muscle-specific chromatin regulators in a mouse model of hypertrophy and heart failure, we identified upregulation of the histone methyltransferase Smyd1 during disease. Inducible loss-of-function studies in vivo demonstrate that Smyd1 is responsible for restricting growth in the adult heart, with its absence leading to cellular hypertrophy, organ remodeling, and fulminate heart failure. Molecular studies reveal Smyd1 to be a muscle-specific regulator of gene expression and indicate that Smyd1 modulates expression of gene isoforms whose expression is associated with cardiac pathology. Importantly, activation of Smyd1 can prevent pathological cell growth. These findings have basic implications for our understanding of cardiac pathologies and open new avenues to the treatment of cardiac hypertrophy and failure by modulating Smyd1.


Asunto(s)
Cardiomegalia/genética , Ensamble y Desensamble de Cromatina/genética , Proteínas de Unión al ADN/genética , Insuficiencia Cardíaca/genética , Proteínas Musculares/genética , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/genética , Animales , Western Blotting , Cardiomegalia/diagnóstico por imagen , Cardiomegalia/metabolismo , Aumento de la Célula , Ecocardiografía , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Células HeLa , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/metabolismo , Humanos , Ratones , Ratones Noqueados , Miocardio/patología , Miocitos Cardíacos/patología , Proteómica , ARN Mensajero/metabolismo , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Regulación hacia Arriba , Remodelación Ventricular/genética
8.
Development ; 138(21): 4801-12, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21989919

RESUMEN

Er71 mutant embryos are nonviable and lack hematopoietic and endothelial lineages. To further define the functional role for ER71 in cell lineage decisions, we generated genetically modified mouse models. We engineered an Er71-EYFP transgenic mouse model by fusing the 3.9 kb Er71 promoter to the EYFP reporter gene. Using FACS and transcriptional profiling, we examined the EYFP(+) population of cells in Er71 mutant and wild-type littermates. In the absence of ER71, we observed an increase in the number of EYFP-expressing cells, increased expression of the cardiac molecular program and decreased expression of the hemato-endothelial program, as compared with wild-type littermate controls. We also generated a novel Er71-Cre transgenic mouse model using the same 3.9 kb Er71 promoter. Genetic fate-mapping studies revealed that the ER71-expressing cells give rise to the hematopoietic and endothelial lineages in the wild-type background. In the absence of ER71, these cell populations contributed to alternative mesodermal lineages, including the cardiac lineage. To extend these analyses, we used an inducible embryonic stem/embryoid body system and observed that ER71 overexpression repressed cardiogenesis. Together, these studies identify ER71 as a critical regulator of mesodermal fate decisions that acts to specify the hematopoietic and endothelial lineages at the expense of cardiac lineages. This enhances our understanding of the mechanisms that govern mesodermal fate decisions early during embryogenesis.


Asunto(s)
Desarrollo Embrionario/fisiología , Mesodermo/embriología , Factores de Transcripción/metabolismo , Animales , Linaje de la Célula , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Femenino , Genes Reporteros , Células Madre Hematopoyéticas/fisiología , Mesodermo/citología , Ratones , Ratones Transgénicos , Músculo Esquelético/fisiología , Mutación , Miocardio/metabolismo , Factores de Transcripción/genética
9.
Genesis ; 51(7): 471-80, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23606617

RESUMEN

Independent mouse knockouts of Etv2 and Flk1 are embryonic lethal and lack hematopoietic and endothelial lineages. We previously reported that Flk1 activates Etv2 in the initiation of hematopoiesis and vasculogenesis. However, Flk1 and its ligand VEGF are expressed throughout development, from E7.0 to adulthood, whereas Etv2 is expressed only transiently during embryogenesis. These observations suggest a complex regulatory interaction between Flk1 and Etv2. To further examine the Flk1 and Etv2 regulatory interaction, we transduced Etv2 and Flk1 mutant ES cells with viral integrants that inducibly overexpress Flk1 or Etv2. We demonstrated that forced expression of Etv2 rescued the hematopoietic and endothelial potential of differentiating Flk1 and Etv2 mutant cells. We further discovered that forced expression of Flk1 can rescue that of the Flk1, but not Etv2 mutant cells. Therefore, we conclude that the requirement for Flk1 can be bypassed by expressing Etv2, supporting the notion that disruption of Etv2 expression is responsible for the early phenotypes of the Etv2 and Flk1 mutant embryos.


Asunto(s)
Cuerpos Embrioides/metabolismo , Células Madre Hematopoyéticas/metabolismo , Factores de Transcripción/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Animales , Línea Celular , Linaje de la Célula , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Células Endoteliales/citología , Células Endoteliales/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis , Células Madre Hematopoyéticas/citología , Masculino , Ratones , Ratones Transgénicos , Factores de Transcripción/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
10.
Stem Cells ; 30(8): 1611-23, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22628281

RESUMEN

During embryogenesis, the endothelial and the hematopoietic lineages first appear during gastrulation in the blood island of the yolk sac. We have previously reported that an Ets variant gene 2 (Etv2/ER71) mutant embryo lacks hematopoietic and endothelial lineages; however, the precise roles of Etv2 in yolk sac development remains unclear. In this study, we define the role of Etv2 in yolk sac blood island development using the Etv2 mutant and a novel Etv2-EYFP reporter transgenic line. Both the hematopoietic and the endothelial lineages are absent in the Etv2 mutant yolk sac. In the Etv2-EYFP transgenic mouse, the EYFP reporter is activated in the nascent mesoderm, expressed in the endothelial and blood progenitors, and in the Tie2(+), c-kit(+), and CD41(+) hematopoietic population. The hematopoietic activity in the E7.75 yolk sac was exclusively localized to the Etv2-EYFP(+) population. In the Etv2 mutant yolk sac, Tie2(+) cells are present but do not express hematopoietic or endothelial markers. In addition, these cells do not form hematopoietic colonies, indicating an essential role of Etv2 in the specification of the hematopoietic lineage. Forced overexpression of Etv2 during embryoid body differentiation induces the hematopoietic and the endothelial lineages, and transcriptional profiling in this context identifies Lmo2 as a downstream target. Using electrophoretic mobility shift assay, chromatin immunoprecipitation, transcriptional assays, and mutagenesis, we demonstrate that Etv2 binds to the Lmo2 enhancer and transactivates its expression. Collectively, our studies demonstrate that Etv2 is expressed during and required for yolk sac hematoendothelial development, and that Lmo2 is one of the downstream targets of Etv2.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Endoteliales/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas con Dominio LIM/metabolismo , Factores de Transcripción/metabolismo , Saco Vitelino/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Diferenciación Celular/fisiología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Expresión Génica , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/fisiología , Humanos , Inmunohistoquímica , Proteínas con Dominio LIM/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Factores de Transcripción/genética , Transfección , Saco Vitelino/citología
11.
Elife ; 112022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36218247

RESUMEN

Tissue clearing for whole organ cell profiling has revolutionized biology and imaging for exploration of organs in three-dimensional space without compromising tissue architecture. But complicated, laborious procedures, or expensive equipment, as well as the use of hazardous, organic solvents prevent the widespread adoption of these methods. Here, we report a simple and rapid tissue clearing method, EZ Clear, that can clear whole adult mouse organs in 48 hr in just three simple steps. Samples stay at room temperature and remain hydrated throughout the clearing process, preserving endogenous and synthetic fluorescence, without altering sample size. After wholemount clearing and imaging, samples processed with EZ Clear can be subjected to downstream applications, such as tissue embedding and cryosectioning followed by standard histology or immunofluorescent staining without loss of fluorescence signal from endogenous or synthetic reporters. Furthermore, we demonstrate that wholemount adult mouse brains processed with EZ Clear can be successfully immunolabeled for fluorescent imaging while still retaining signal from endogenous fluorescent reporters. Overall, the simplicity, speed, and flexibility of EZ Clear make it easy to adapt and implement in diverse imaging modalities in biomedical research.


Asunto(s)
Colorantes , Imagenología Tridimensional , Animales , Encéfalo/diagnóstico por imagen , Imagenología Tridimensional/métodos , Ratones , Solventes , Coloración y Etiquetado
12.
Curr Protoc Mouse Biol ; 9(2): e63, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31195428

RESUMEN

Iodine-contrast micro-computed tomography (microCT) 3D imaging provides a non-destructive and high-throughput platform for studying mouse embryo and neonate development. Here we provide protocols on preparing mouse embryos and neonates between embryonic day 8.5 (E8.5) to postnatal day 4 (P4) for iodine-contrast microCT imaging. With the implementation of the STABILITY method to create a polymer-tissue hybrid structure, we have demonstrated that not only is soft tissue shrinkage minimized but also the minimum required time for soft tissue staining with iodine is decreased, especially for E18.5 to P4 samples. In addition, we also provide a protocol on using commercially available X-CLARITYTM hydrogel solution to create the similar polymer-tissue hybrid structure on delicate early post-implantation stage (E8.5 to E14.5) embryos. With its simple sample staining and mounting processes, this protocol is easy to adopt and implement for most of the commercially available, stand-alone microCT systems in order to study mouse development between early post-implantation to early postnatal stages. © 2019 by John Wiley & Sons, Inc.


Asunto(s)
Medios de Contraste/uso terapéutico , Compuestos de Yodo/uso terapéutico , Ratones , Microtomografía por Rayos X/métodos , Animales , Animales Recién Nacidos , Embrión de Mamíferos , Microtomografía por Rayos X/instrumentación
13.
Diseases ; 7(1)2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30577454

RESUMEN

SET and MYND Domain 1 (SMYD1) is a cardiac and skeletal muscle-specific, histone methyl transferase that is critical for both embryonic and adult heart development and function in both mice and men. We report here that skeletal muscle-specific, myogenin (myoG)-Cre-mediated conditional knockout (CKO) of Smyd1 results in perinatal death. As early as embryonic day 12.5, Smyd1 CKOs exhibit multiple skeletal muscle defects in proliferation, morphology, and gene expression. However, all myotonic descendants are not afflicted equally. Trunk muscles are virtually ablated with excessive accumulation of brown adipose tissue (BAT), forelimb muscles are disorganized and improperly differentiated, but other muscles, such as the masseter, are normal. While expression of major myogenic regulators went unscathed, adaptive and innate immune transcription factors critical for BAT development/physiology were downregulated. Whereas classical mitochondrial BAT accumulation went unscathed following loss of SMYD1, key transcription factors, including PRDM16, UCP-1, and CIDE-a that control skeletal muscle vs. adipose fate, were downregulated. Finally, in rare adults that survive perinatal lethality, SMYD1 controls specification of some, but not all, skeletal muscle fiber-types.

15.
Nat Commun ; 8: 14362, 2017 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-28181481

RESUMEN

Developmental, stem cell and cancer biologists are interested in the molecular definition of cellular differentiation. Although single-cell RNA sequencing represents a transformational advance for global gene analyses, novel obstacles have emerged, including the computational management of dropout events, the reconstruction of biological pathways and the isolation of target cell populations. We develop an algorithm named dpath that applies the concept of metagene entropy and allows the ranking of cells based on their differentiation potential. We also develop self-organizing map (SOM) and random walk with restart (RWR) algorithms to separate the progenitors from the differentiated cells and reconstruct the lineage hierarchies in an unbiased manner. We test these algorithms using single cells from Etv2-EYFP transgenic mouse embryos and reveal specific molecular pathways that direct differentiation programmes involving the haemato-endothelial lineages. This software program quantitatively assesses the progenitor and committed states in single-cell RNA-seq data sets in a non-biased manner.


Asunto(s)
Linaje de la Célula/genética , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/citología , Células Madre Embrionarias de Ratones/citología , Análisis de la Célula Individual , Factores de Transcripción/metabolismo , Algoritmos , Animales , Agregación Celular , Separación Celular , Análisis por Conglomerados , Cuerpos Embrioides/citología , Células Endoteliales/citología , Células Endoteliales/metabolismo , Femenino , Células Madre Hematopoyéticas/metabolismo , Masculino , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Programas Informáticos , Transcriptoma/genética
16.
Dis Model Mech ; 9(3): 347-59, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26935107

RESUMEN

The Smyd1 gene encodes a lysine methyltransferase specifically expressed in striated muscle. Because Smyd1-null mouse embryos die from heart malformation prior to formation of skeletal muscle, we developed a Smyd1 conditional-knockout allele to determine the consequence of SMYD1 loss in mammalian skeletal muscle. Ablation of SMYD1 specifically in skeletal myocytes after myofiber differentiation using Myf6(cre) produced a non-degenerative myopathy. Mutant mice exhibited weakness, myofiber hypotrophy, prevalence of oxidative myofibers, reduction in triad numbers, regional myofibrillar disorganization/breakdown and a high percentage of myofibers with centralized nuclei. Notably, we found broad upregulation of muscle development genes in the absence of regenerating or degenerating myofibers. These data suggest that the afflicted fibers are in a continual state of repair in an attempt to restore damaged myofibrils. Disease severity was greater for males than females. Despite equivalent expression in all fiber types, loss of SMYD1 primarily affected fast-twitch muscle, illustrating fiber-type-specific functions for SMYD1. This work illustrates a crucial role for SMYD1 in skeletal muscle physiology and myofibril integrity.


Asunto(s)
Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Musculares/metabolismo , Atrofia Muscular/enzimología , Miofibrillas/enzimología , Miofibrillas/patología , Factores de Transcripción/metabolismo , Animales , Femenino , Masculino , Ratones Noqueados , Desarrollo de Músculos/genética , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Rápida/ultraestructura , Fuerza Muscular , Atrofia Muscular/patología , Miofibrillas/ultraestructura , Tamaño de los Órganos , Oxidación-Reducción , Regeneración , Sarcolema/metabolismo , Regulación hacia Arriba/genética
17.
Cell Rep ; 13(5): 915-23, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26565905

RESUMEN

MicroRNAs (miRNAs) are known to regulate critical developmental stages during embryogenesis. Here, we defined an Etv2-miR-130a cascade that regulates mesodermal specification and determination. Ablation of Dicer in the Etv2-expressing precursors resulted in altered mesodermal lineages and embryonic lethality. We identified miR-130a as a direct target of Etv2 and demonstrated its role in the segregation of bipotent hemato-endothelial progenitors toward the endothelial lineage. Gain-of-function experiments demonstrated that miR-130a promoted the endothelial program at the expense of the cardiac program without impacting the hematopoietic lineages. In contrast, CRISPR/Cas9-mediated knockout of miR-130a demonstrated a reduction of the endothelial program without affecting hematopoiesis. Mechanistically, miR-130a directly suppressed Pdgfra expression and promoted the endothelial program by blocking Pdgfra signaling. Inhibition or activation of Pdgfra signaling phenocopied the miR-130a overexpression and knockout phenotypes, respectively. In summary, we report the function of a miRNA that specifically promotes the divergence of the hemato-endothelial progenitor to the endothelial lineage.


Asunto(s)
Linaje de la Célula , Mesodermo/citología , MicroARNs/genética , Factores de Transcripción/genética , Animales , Células Cultivadas , Células Progenitoras Endoteliales/citología , Células Progenitoras Endoteliales/metabolismo , Hematopoyesis , Mesodermo/metabolismo , Ratones , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factores de Transcripción/metabolismo
18.
PLoS One ; 10(3): e0121765, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25803368

RESUMEN

Smyd1/Bop is an evolutionary conserved histone methyltransferase previously shown by conventional knockout to be critical for embryonic heart development. To further explore the mechanism(s) in a cell autonomous context, we conditionally ablated Smyd1 in the first and second heart fields of mice using a knock-in (KI) Nkx2.5-cre driver. Robust deletion of floxed-Smyd1 in cardiomyocytes and the outflow tract (OFT) resulted in embryonic lethality at E9.5, truncation of the OFT and right ventricle, and additional defects consistent with impaired expansion and proliferation of the second heart field (SHF). Using a transgenic (Tg) Nkx2.5-cre driver previously shown to not delete in the SHF and OFT, early embryonic lethality was bypassed and both ventricular chambers were formed; however, reduced cardiomyocyte proliferation and other heart defects resulted in later embryonic death at E11.5-12.5. Proliferative impairment prior to both early and mid-gestational lethality was accompanied by dysregulation of transcripts critical for endoplasmic reticulum (ER) stress. Mid-gestational death was also associated with impairment of oxidative stress defense-a phenotype highly similar to the previously characterized knockout of the Smyd1-interacting transcription factor, skNAC. We describe a potential feedback mechanism in which the stress response factor Tribbles3/TRB3, when directly methylated by Smyd1, acts as a co-repressor of Smyd1-mediated transcription. Our findings suggest that Smyd1 is required for maintaining cardiomyocyte proliferation at minimally two different embryonic heart developmental stages, and its loss leads to linked stress responses that signal ensuing lethality.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Estrés del Retículo Endoplásmico , Corazón/crecimiento & desarrollo , Proteínas Musculares/metabolismo , Miocardio/citología , Miocardio/metabolismo , Estrés Oxidativo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Chlorocebus aethiops , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Embrión de Mamíferos/embriología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Metilación , Ratones , Datos de Secuencia Molecular , Proteínas Musculares/deficiencia , Proteínas Musculares/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Transcripción Genética , Regulación hacia Arriba
19.
PLoS One ; 7(11): e50103, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23185546

RESUMEN

Previous reports regarding the genetic hierarchy between Ets related protein 71 (Er71/Etv2) and Flk1 is unclear. In the present study, we pursued a genetic approach to define the molecular cascade between Etv2 and Flk1. Using a transgenic Etv2-EYFP reporter mouse, we examined the expression pattern of Etv2 relative to Flk1 in the early conceptus. Etv2-EYFP was expressed in subset of Flk1 positive cells during primitive streak stages, suggesting that Flk1 is upstream of Etv2 during gastrulation. Analysis of reporter gene expression in Flk1 and Etv2 mutant mice further supports the hypothesis that Flk1 is necessary for Etv2 expression. The frequency of cells expressing Flk1 in Etv2 mutants is only modestly altered (21% decrease), whereas expression of the Etv2-EYFP transgenic reporter was severely reduced in the Flk1 null background. We further demonstrate using transcriptional assays that, in the presence of Flk1, the Etv2 promoter is activated by VEGF, the Flk1 ligand. Pharmacological inhibition studies demonstrate that VEGF mediated activation is dependent on p38 MAPK, which activates Creb. We identify the VEGF response element in the Etv2 promoter and demonstrate that Creb binds to this motif by EMSA and ChIP assays. In summary, we provide new evidence that VEGF activates Etv2 by signaling through Flk1, which activates Creb through the p38 MAPK signaling cascade.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Gastrulación/genética , Factores de Transcripción/genética , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Animales , Secuencia de Bases , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Unión Proteica , Elementos de Respuesta , Transducción de Señal , Factores de Transcripción/metabolismo , Activación Transcripcional , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Development ; 132(11): 2669-78, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15890826

RESUMEN

The vertebrate heart is assembled during embryogenesis in a modular manner from different populations of precursor cells. The right ventricular chamber and outflow tract are derived primarily from a population of progenitors known as the anterior heart field. These regions of the heart are severely hypoplastic in mutant mice lacking the myocyte enhancer factor 2C (MEF2C) and BOP transcription factors, suggesting that these cardiogenic regulatory factors may act in a common pathway for development of the anterior heart field and its derivatives. We show that Bop expression in the developing heart depends on the direct binding of MEF2C to a MEF2-response element in the Bop promoter that is necessary and sufficient to recapitulate endogenous Bop expression in the anterior heart field and its cardiac derivatives during mouse development. The Bop promoter also directs transcription in the skeletal muscle lineage, but only cardiac expression is dependent on MEF2. These findings identify Bop as an essential downstream effector gene of MEF2C in the developing heart, and reveal a transcriptional cascade involved in development of the anterior heart field and its derivatives.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Ventrículos Cardíacos/embriología , Ratones/embriología , Proteínas Musculares/metabolismo , Factores Reguladores Miogénicos/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Southern Blotting , ADN Complementario/genética , Proteínas de Unión al ADN , Ensayo de Cambio de Movilidad Electroforética , Hibridación in Situ , Factores de Transcripción MEF2 , Ratones Mutantes , Datos de Secuencia Molecular , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Oligonucleótidos , Regiones Promotoras Genéticas/genética , Factores de Transcripción/genética , Transgenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA