Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mar Drugs ; 22(2)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38393060

RESUMEN

Marine microorganisms have been demonstrated to be an important source for bioactive molecules. In this paper we report the synthesis of Ni nanoparticles (NiSNPs) used as reducing and capping agents for five bacterial strains isolated from an Antarctic marine consortium: Marinomonas sp. ef1, Rhodococcus sp. ef1, Pseudomonas sp. ef1, Brevundimonas sp. ef1, and Bacillus sp. ef1. The NiSNPs were characterized by Ultraviolet-visible (UV-vis) spectroscopy, Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopic analysis. The maximum absorbances in the UV-Vis spectra were in the range of 374 nm to 422 nm, corresponding to the Surface plasmon resonance (SPR) of Nickel. DLS revealed NiSNPs with sizes between 40 and 45 nm. All NiSNPs were polycrystalline with a face-centered cubic lattice, as revealed by XRD analyses. The NiSNPs zeta potential values were highly negative. TEM analysis showed that the NiSNPs were either spherical or rod shaped, well segregated, and with a size between 20 and 50 nm. The FTIR spectra revealed peaks of amino acid and protein binding to the NiSNPs. Finally, all the NiSNPs possess significant antimicrobial activity, which may play an important role in the management of infectious diseases affecting human health.


Asunto(s)
Antibacterianos , Nanopartículas del Metal , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Plata/química , Níquel , Regiones Antárticas , Nanopartículas del Metal/química , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/química
2.
ACS Appl Mater Interfaces ; 10(14): 11613-11622, 2018 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-29565556

RESUMEN

Topological insulators have attracted much interest in topological states of matter featuring unusual electrical conduction behaviors. It has been recently reported that a topological crystalline insulator could exhibit a high thermoelectric performance by breaking its crystal symmetry via chemical doping. Here, we investigate the multiple effects of Na, Se, and S alloying on thermoelectric properties of a topological crystalline insulator Pb0.6Sn0.4Te. The Na doping is known to be effective for breaking the crystalline mirror symmetry of Pb0.6Sn0.4Te. We demonstrate that simultaneous emergence of band convergence by Se alloying and nanostructuring by S doping enhance the power factor and decrease lattice thermal conductivity, respectively. Remarkably, the high power factor of 22.3 µW cm-1 K-2 at 800 K is achieved for Na 1%-doped Pb0.6Sn0.4Te0.90Se0.05S0.05 mainly due to a relatively high Seebeck coefficient via band convergence by Se alloying as well as the suppression of bipolar conduction at high temperatures by the increase of energy band gap. Furthermore, the lattice thermal conductivity is significantly suppressed by PbS nanoprecipitates without deteriorating the hole carrier mobility, ranging from 0.80 W m-1 K-1 for Pb0.6Sn0.4Te to 0.17 W m-1 K-1 at 300 K for Pb0.6Sn0.4Te0.85Se0.10S0.05. As a result, the synergistically combined effects of breaking the crystalline mirror symmetry of topological crystalline insulator, band convergence, and nanostructuring for Pb0.6Sn0.4Te0.95- xSe xS0.05 ( x = 0, 0.05, 0.1, 0.2, and 0.95) give rise to an impressively high ZT of 1.59 at 800 K for x = 0.05. We suggest that the multiple doping in topological crystalline insulators is effective for improving the thermoelectric performance.

3.
Data Brief ; 13: 233-241, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28626789

RESUMEN

The data presented in this article are related to the research article entitled "High thermoelectric performance in pseudo quaternary compounds of (PbTe)0.95-x (PbSe)x(PbS)0.05 by simultaneous band convergence and nano precipitation" (Ginting et al., 2017) [1]. We measured electrical and thermal transport properties such as temperature-dependent Hall carrier density nH , Hall mobility µH , thermal diffusivity D, heat capacity Cp , and power factor S2σ in (PbTe)0.95-x (PbSe)x(PbS)0.05 (x=0.0, 0.05, 0.10, 0.15, 0.20, 0.35, and 0.95) compounds with other related compounds from references. From the theoretical fitting of thermal conductivity κ, we found that the temperature-dependent thermal conductivity follows nano-structure model as well as alloy scattering. Transmission electron microscopy images shows that there are numerous nano-scale precipitates in a matrix. Owing to the low thermal conductivity and high power factor, we report high thermoelectric performances such as the high ZT, engineering ZTeng , efficiency η.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA