Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 39(3): 387-401, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30651003

RESUMEN

Objective- Atherosclerotic coronary artery disease is the leading cause of death worldwide, and current treatment options are insufficient. Using systems-level network cluster analyses on a large coronary artery disease case-control cohort, we previously identified PCSK3 (proprotein convertase subtilisin/kexin family member 3; FURIN) as a member of several coronary artery disease-associated pathways. Thus, our objective is to determine the role of FURIN in atherosclerosis. Approach and Results- In vitro, FURIN inhibitor treatment resulted in reduced monocyte migration and reduced macrophage and vascular endothelial cell inflammatory and cytokine gene expression. In vivo, administration of an irreversible inhibitor of FURIN, α-1-PDX (α1-antitrypsin Portland), to hyperlipidemic Ldlr-/- mice resulted in lower atherosclerotic lesion area and a specific reduction in severe lesions. Significantly lower lesional macrophage and collagen area, as well as systemic inflammatory markers, were observed. MMP2 (matrix metallopeptidase 2), an effector of endothelial function and atherosclerotic lesion progression, and a FURIN substrate was significantly reduced in the aorta of inhibitor-treated mice. To determine FURIN's role in vascular endothelial function, we administered α-1-PDX to Apoe-/- mice harboring a wire injury in the common carotid artery. We observed significantly decreased carotid intimal thickness and lower plaque cellularity, smooth muscle cell, macrophage, and inflammatory marker content, suggesting protection against vascular remodeling. Overexpression of FURIN in this model resulted in a significant 67% increase in intimal plaque thickness, confirming that FURIN levels directly correlate with atherosclerosis. Conclusions- We show that systemic inhibition of FURIN in mice decreases vascular remodeling and atherosclerosis. FURIN-mediated modulation of MMP2 activity may contribute to the atheroprotection observed in these mice.


Asunto(s)
Aterosclerosis/prevención & control , Furina/antagonistas & inhibidores , Placa Aterosclerótica/tratamiento farmacológico , alfa 1-Antitripsina/uso terapéutico , Animales , Aorta/enzimología , Aterosclerosis/genética , Aterosclerosis/patología , Arteria Carótida Común , Progresión de la Enfermedad , Evaluación Preclínica de Medicamentos , Inducción Enzimática/efectos de los fármacos , Furina/genética , Furina/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Macrófagos/fisiología , Masculino , Metaloproteinasa 2 de la Matriz/análisis , Ratones , Ratones Endogámicos C57BL , Monocitos/fisiología , Placa Aterosclerótica/patología , Receptores de LDL/deficiencia , Túnica Íntima/efectos de los fármacos , Túnica Íntima/patología , Remodelación Vascular , alfa 1-Antitripsina/farmacología
2.
Am J Physiol Heart Circ Physiol ; 316(2): H360-H370, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30499711

RESUMEN

Here, we aimed to explore sex differences and the impact of sex hormones on cardiac contractile properties in doxorubicin (DOX)-induced cardiotoxicity. Male and female Sprague-Dawley rats were subjected to sham surgery or gonadectomy and then treated or untreated with DOX (2 mg/kg) every other week for 10 wk. Estrogen preserved maximum active tension (Tmax) with DOX exposure, whereas progesterone and testosterone did not. The effects of sex hormones and DOX correlated with both altered myosin heavy chain isoform expression and myofilament protein oxidation, suggesting both as possible mechanisms. However, acute treatment with oxidative stress (H2O2) or a reducing agent (DTT) indicated that the effects on Tmax were mediated by reversible myofilament oxidative modifications and not only changes in myosin heavy chain isoforms. There were also sex differences in the DOX impact on myofilament Ca2+ sensitivity. DOX increased Ca2+ sensitivity in male rats only in the absence of testosterone and in female rats only in the presence of estrogen. Conversely, DOX decreased Ca2+ sensitivity in female rats in the absence of estrogen. In most instances, this mechanism was through altered phosphorylation of troponin I at Ser23/Ser24. However, there was an additional DOX-induced, estrogen-dependent, irreversible (by DTT) mechanism that altered Ca2+ sensitivity. Our data demonstrate sex differences in cardiac contractile responses to chronic DOX treatment. We conclude that estrogen protects against chronic DOX treatment in the heart, preserving myofilament function. NEW & NOTEWORTHY We identified sex differences in cardiotoxic effects of chronic doxorubicin (DOX) exposure on myofilament function. Estrogen, but not testosterone, decreases DOX-induced oxidative modifications on myofilaments to preserve maximum active tension. In rats, DOX exposure increased Ca2+ sensitivity in the presence of estrogen but decreased Ca2+ sensitivity in the absence of estrogen. In male rats, the DOX-induced shift in Ca2+ sensitivity involved troponin I phosphorylation; in female rats, this was through an estrogen-dependent mechanism.


Asunto(s)
Antioxidantes/farmacología , Doxorrubicina/toxicidad , Estrógenos/farmacología , Músculos Papilares/metabolismo , Testosterona/farmacología , Animales , Calcio/metabolismo , Cardiotoxicidad , Estrógenos/metabolismo , Femenino , Masculino , Contracción Miocárdica , Miofibrillas/efectos de los fármacos , Miofibrillas/metabolismo , Miofibrillas/fisiología , Estrés Oxidativo , Músculos Papilares/efectos de los fármacos , Músculos Papilares/fisiología , Fosforilación , Procesamiento Proteico-Postraduccional , Ratas , Ratas Sprague-Dawley , Factores Sexuales , Testosterona/metabolismo , Troponina I/metabolismo
3.
Nat Struct Mol Biol ; 31(2): 378-389, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326650

RESUMEN

E3 ubiquitin ligases, in collaboration with E2 ubiquitin-conjugating enzymes, modify proteins with poly-ubiquitin chains. Cullin-RING ligase (CRL) E3s use Cdc34/UBE2R-family E2s to build Lys48-linked poly-ubiquitin chains to control an enormous swath of eukaryotic biology. Yet the molecular mechanisms underlying this exceptional linkage specificity and millisecond kinetics of poly-ubiquitylation remain unclear. Here we obtain cryogenic-electron microscopy (cryo-EM) structures that provide pertinent insight into how such poly-ubiquitin chains are forged. The CRL RING domain not only activates the E2-bound ubiquitin but also shapes the conformation of a distinctive UBE2R2 loop, positioning both the ubiquitin to be transferred and the substrate-linked acceptor ubiquitin within the active site. The structures also reveal how the ubiquitin-like protein NEDD8 uniquely activates CRLs during chain formation. NEDD8 releases the RING domain from the CRL, but unlike previous CRL-E2 structures, does not contact UBE2R2. These findings suggest how poly-ubiquitylation may be accomplished by many E2s and E3s.


Asunto(s)
Proteínas Cullin , Enzimas Ubiquitina-Conjugadoras , Proteínas Cullin/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitina/metabolismo , Poliubiquitina/metabolismo
4.
Elife ; 122023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37769126

RESUMEN

Intermittent fasting (IF) has been shown to reduce cardiovascular risk factors in both animals and humans, and can protect the heart against ischemic injury in models of myocardial infarction. However, the underlying molecular mechanisms behind these effects remain unclear. To shed light on the molecular and cellular adaptations of the heart to IF, we conducted comprehensive system-wide analyses of the proteome, phosphoproteome, and transcriptome, followed by functional analysis. Using advanced mass spectrometry, we profiled the proteome and phosphoproteome of heart tissues obtained from mice that were maintained on daily 12- or 16 hr fasting, every-other-day fasting, or ad libitum control feeding regimens for 6 months. We also performed RNA sequencing to evaluate whether the observed molecular responses to IF occur at the transcriptional or post-transcriptional levels. Our analyses revealed that IF significantly affected pathways that regulate cyclic GMP signaling, lipid and amino acid metabolism, cell adhesion, cell death, and inflammation. Furthermore, we found that the impact of IF on different metabolic processes varied depending on the length of the fasting regimen. Short IF regimens showed a higher correlation of pathway alteration, while longer IF regimens had an inverse correlation of metabolic processes such as fatty acid oxidation and immune processes. Additionally, functional echocardiographic analyses demonstrated that IF enhances stress-induced cardiac performance. Our systematic multi-omics study provides a molecular framework for understanding how IF impacts the heart's function and its vulnerability to injury and disease.


Asunto(s)
Ayuno Intermitente , Multiómica , Humanos , Ratones , Animales , Proteoma , Ayuno/fisiología , Metabolismo Energético
5.
Autophagy ; 18(9): 2150-2160, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35012409

RESUMEN

Caffeine is among the most highly consumed substances worldwide, and it has been associated with decreased cardiovascular risk. Although caffeine has been shown to inhibit the proliferation of vascular smooth muscle cells (VSMCs), the mechanism underlying this effect is unknown. Here, we demonstrated that caffeine decreased VSMC proliferation and induced macroautophagy/autophagy in an in vivo vascular injury model of restenosis. Furthermore, we studied the effects of caffeine in primary human and mouse aortic VSMCs and immortalized mouse aortic VSMCs. Caffeine decreased cell proliferation, and induced autophagy flux via inhibition of MTOR signaling in these cells. Genetic deletion of the key autophagy gene Atg5, and the Sqstm1/p62 gene encoding a receptor protein, showed that the anti-proliferative effect by caffeine was dependent upon autophagy. Interestingly, caffeine also decreased WNT-signaling and the expression of two WNT target genes, Axin2 and Ccnd1 (cyclin D1). This effect was mediated by autophagic degradation of a key member of the WNT signaling cascade, DVL2, by caffeine to decrease WNT signaling and cell proliferation. SQSTM1/p62, MAP1LC3B-II and DVL2 were also shown to interact with each other, and the overexpression of DVL2 counteracted the inhibition of cell proliferation by caffeine. Taken together, our in vivo and in vitro findings demonstrated that caffeine reduced VSMC proliferation by inhibiting WNT signaling via stimulation of autophagy, thus reducing the vascular restenosis. Our findings suggest that caffeine and other autophagy-inducing drugs may represent novel cardiovascular therapeutic tools to protect against restenosis after angioplasty and/or stent placement.


Asunto(s)
Autofagia , Músculo Liso Vascular , Animales , Autofagia/fisiología , Cafeína/metabolismo , Cafeína/farmacología , Proliferación Celular , Células Cultivadas , Humanos , Ratones , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteína Sequestosoma-1/metabolismo , Vía de Señalización Wnt
6.
Sci Rep ; 11(1): 20674, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34667238

RESUMEN

Vascular restenosis remains a major problem in patients with coronary artery disease (CAD) and peripheral artery disease (PAD). Neointimal hyperplasia, defined by post-procedure proliferation and migration of vascular smooth muscle cells (VSMCs) is a key underlying pathology. Here we investigated the role of Interleukin 11 (IL-11) in a mouse model of injury-related plaque development. Apoe-/- mice were fed a hyperlipidaemic diet and subjected to carotid wire injury of the right carotid. Mice were injected with an anti-IL11 antibody (X203), IgG control antibody or buffer. We performed ultrasound analysis to assess vessel wall thickness and blood velocity. Using histology and immunofluorescence approaches, we determined the effects of IL-11 inhibition on VSMC and macrophages phenotypes and fibrosis. Treatment of mice with carotid wire injury using X203 significantly reduced post-endothelial injury vessel wall thickness, and injury-related plaque, when compared to control. Immunofluorescence staining of the injury-related plaque showed that X203 treatment did not reduce macrophage numbers, but reduced the number of VSMCs and lowered matrix metalloproteinase 2 (MMP2) levels and collagen content in comparison to control. X203 treatment was associated with a significant increase in smooth muscle protein 22α (SM22α) positive cells in injury-related plaque compared to control, suggesting preservation of the contractile VSMC phenotype. Interestingly, X203 also reduced the collagen content of uninjured carotid arteries as compared to IgG, showing an additional effect on hyperlipidemia-induced arterial remodeling in the absence of mechanical injury. Therapeutic inhibition of IL-11 reduced vessel wall thickness, attenuated neointimal hyperplasia, and has favorable effects on vascular remodeling following wire-induced endothelial injury. This suggests IL-11 inhibition as a potential novel therapeutic approach to reduce arterial stenosis following revascularization in CAD and PAD patients.


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Arterias Carótidas/efectos de los fármacos , Traumatismos de las Arterias Carótidas/tratamiento farmacológico , Hiperplasia/tratamiento farmacológico , Interleucina-11/metabolismo , Animales , Arterias Carótidas/metabolismo , Traumatismos de las Arterias Carótidas/metabolismo , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Colágeno/metabolismo , Modelos Animales de Enfermedad , Hiperplasia/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Neointima/tratamiento farmacológico , Neointima/metabolismo , Remodelación Vascular/efectos de los fármacos
7.
Adv Drug Deliv Rev ; 159: 54-93, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32423566

RESUMEN

Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired ß-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Metabolismo de los Lípidos , Animales , Enfermedades Cardiovasculares/terapia , Humanos , Lipoproteínas HDL/metabolismo
8.
J Steroid Biochem Mol Biol ; 147: 1-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25448746

RESUMEN

Increased susceptibility to stress-induced myocardial damage is a significant concern in addition to decreased cardiac performance in postmenopausal females. To determine the potential mechanisms underlying myocardial vulnerability after deprivation of female sex hormones, cardiac mitochondrial function is determined in 10-week ovariectomized rats (OVX). Significant mitochondrial swelling in the heart of OVX rats is observed. This structural alteration can be prevented with either estrogen or progesterone supplementation. Using an isolated mitochondrial preparation, a decrease in ATP synthesis by complex I activation in an OVX rat is completely restored by estrogen, but not progesterone. At basal activation, reactive oxygen species (ROS) production from the mitochondria is not affected by the ovariectomy. However, after incubated in the presence of either high Ca(2+) or antimycin-A, there is a significantly higher mitochondrial ROS production in the OVX sample compared to the control. This increased stress-induced ROS production is not observed in the preparation isolated from the hearts of OVX rats with estrogen or progesterone supplementation. However, deprivation of female sex hormones has no effect on the protein expression of electron transport chain complexes, mitofusin 2, or superoxide dismutase 2. Taken together, these findings suggest that female sex hormones, estrogen and progesterone, play significant regulatory roles in maintaining normal mitochondrial properties by stabilizing the structural assembly of mitochondria as well as attenuating mitochondrial ROS production. Estrogen, but not progesterone, also plays an important role in modulating mitochondrial ATP synthesis.


Asunto(s)
Estrógenos/metabolismo , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Adenosina Trifosfato/biosíntesis , Animales , Estrógenos/administración & dosificación , Estrógenos/farmacología , Femenino , GTP Fosfohidrolasas , Proteínas de la Membrana/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Miocardio/metabolismo , Miocardio/patología , Ovariectomía , Progesterona/administración & dosificación , Progesterona/metabolismo , Progesterona/farmacología , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA