Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 609(7929): 975-985, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36104561

RESUMEN

Understanding cell state transitions and purposefully controlling them is a longstanding challenge in biology. Here we present cell state transition assessment and regulation (cSTAR), an approach for mapping cell states, modelling transitions between them and predicting targeted interventions to convert cell fate decisions. cSTAR uses omics data as input, classifies cell states, and develops a workflow that transforms the input data into mechanistic models that identify a core signalling network, which controls cell fate transitions by influencing whole-cell networks. By integrating signalling and phenotypic data, cSTAR models how cells manoeuvre in Waddington's landscape1 and make decisions about which cell fate to adopt. Notably, cSTAR devises interventions to control the movement of cells in Waddington's landscape. Testing cSTAR in a cellular model of differentiation and proliferation shows a high correlation between quantitative predictions and experimental data. Applying cSTAR to different types of perturbation and omics datasets, including single-cell data, demonstrates its flexibility and scalability and provides new biological insights. The ability of cSTAR to identify targeted perturbations that interconvert cell fates will enable designer approaches for manipulating cellular development pathways and mechanistically underpinned therapeutic interventions.


Asunto(s)
Diferenciación Celular , Modelos Biológicos , Transducción de Señal , Proliferación Celular , Conjuntos de Datos como Asunto , Fenotipo , Análisis de la Célula Individual , Flujo de Trabajo
2.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37511580

RESUMEN

Kinase Suppressor of RAS 1 (KSR1) is a scaffolding protein for the RAS-RAF-MEK-ERK pathway, which is one of the most frequently altered pathways in human cancers. Previous results have shown that KSR1 has a critical role in mutant RAS-mediated transformation. Here, we examined the role of KSR1 in mutant BRAF transformation. We used CRISPR/Cas9 to knock out KSR1 in a BRAFV600E-transformed melanoma cell line. KSR1 loss produced a complex phenotype characterised by impaired proliferation, cell cycle defects, decreased transformation, decreased invasive migration, increased cellular senescence, and increased apoptosis. To decipher this phenotype, we used a combination of proteomic ERK substrate profiling, global protein expression profiling, and biochemical validation assays. The results suggest that KSR1 directs ERK to phosphorylate substrates that have a critical role in ensuring cell survival. The results further indicate that KSR1 loss induces the activation of p38 Mitogen-Activated Protein Kinase (MAPK) and subsequent cell cycle aberrations and senescence. In summary, KSR1 function plays a key role in oncogenic BRAF transformation.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Humanos , Sistema de Señalización de MAP Quinasas , Melanoma/genética , Proteómica , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas ras/metabolismo
3.
EMBO Rep ; 19(2): 320-336, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29263201

RESUMEN

Altered cell metabolism is a hallmark of cancer, and targeting specific metabolic nodes is considered an attractive strategy for cancer therapy. In this study, we evaluate the effects of metabolic stressors on the deregulated ERK pathway in melanoma cells bearing activating mutations of the NRAS or BRAF oncogenes. We report that metabolic stressors promote the dimerization of KSR proteins with CRAF in NRAS-mutant cells, and with oncogenic BRAF in BRAFV600E-mutant cells, thereby enhancing ERK pathway activation. Despite this similarity, the two genomic subtypes react differently when a higher level of metabolic stress is induced. In NRAS-mutant cells, the ERK pathway is even more stimulated, while it is strongly downregulated in BRAFV600E-mutant cells. We demonstrate that this is caused by the dissociation of mutant BRAF from KSR and is mediated by activated AMPK. Both types of ERK regulation nevertheless lead to cell cycle arrest. Besides studying the effects of the metabolic stressors on ERK pathway activity, we also present data suggesting that for efficient therapies of both genomic melanoma subtypes, specific metabolic targeting is necessary.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas Quinasas/metabolismo , Multimerización de Proteína , Estrés Fisiológico , Quinasas raf/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Activación Enzimática , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Glucosa/metabolismo , Glucólisis , Humanos , Melanoma/genética , Melanoma/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , Consumo de Oxígeno , Proteínas Quinasas/química , Proteínas Quinasas/genética , Proteínas Recombinantes de Fusión , Quinasas raf/química , Quinasas raf/genética
4.
Angew Chem Int Ed Engl ; 55(3): 983-6, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26644280

RESUMEN

RAF kinases are key players in the MAPK signaling pathway and are important targets for personalized cancer therapy. RAF dimerization is part of the physiological activation mechanism, together with phosphorylation, and is known to convey resistance to RAF inhibitors. Herein, molecular dynamics simulations are used to show that phosphorylation of a key N-terminal acidic (NtA) motif facilitates RAF dimerization by introducing several interprotomer salt bridges between the αC-helix and charged residues upstream of the NtA motif. Additionally, we show that the R-spine of RAF interacts with a conserved Trp residue in the vicinity of the NtA motif, connecting the active sites of two protomers and thereby modulating the cooperative interactions in the RAF dimer. Our findings provide a first structure-based mechanism for the auto-transactivation of RAF and could be generally applicable to other kinases, opening new pathways for overcoming dimerization-related drug resistance.


Asunto(s)
Activación Transcripcional , Quinasas raf/metabolismo , Dimerización , Fosforilación , Conformación Proteica , Quinasas raf/química
5.
Sci Data ; 10(1): 203, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045861

RESUMEN

RAF kinases play major roles in cancer. BRAFV600E mutants drive ~6% of human cancers. Potent kinase inhibitors exist but show variable effects in different cancer types, sometimes even inducing paradoxical RAF kinase activation. Both paradoxical activation and drug resistance are frequently due to enhanced dimerization between RAF1 and BRAF, which maintains or restores the activity of the downstream MEK-ERK pathway. Here, using quantitative proteomics we mapped the interactomes of RAF1 monomers, RAF1-BRAF and RAF1-BRAFV600E dimers identifying and quantifying >1,000 proteins. In addition, we examined the effects of vemurafenib and sorafenib, two different types of clinically used RAF inhibitors. Using regression analysis to compare different conditions we found a large overlapping core interactome but also distinct condition specific differences. Given that RAF proteins have kinase independent functions such dynamic interactome changes could contribute to their functional diversification. Analysing this dataset may provide a deeper understanding of RAF signalling and mechanisms of resistance to RAF inhibitors.


Asunto(s)
Inhibidores de Proteínas Quinasas , Proteínas Proto-Oncogénicas B-raf , Proteínas Proto-Oncogénicas c-raf , Humanos , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas B-raf/genética , Transducción de Señal , Vemurafenib , Proteínas Proto-Oncogénicas c-raf/química , Proteínas Proto-Oncogénicas c-raf/genética , Proteoma
6.
Biomolecules ; 13(8)2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37627277

RESUMEN

Cancer cells often adapt to targeted therapies, yet the molecular mechanisms underlying adaptive resistance remain only partially understood. Here, we explore a mechanism of RAS/RAF/MEK/ERK (MAPK) pathway reactivation through the upregulation of RAF isoform (RAFs) abundance. Using computational modeling and in vitro experiments, we show that the upregulation of RAFs changes the concentration range of paradoxical pathway activation upon treatment with conformation-specific RAF inhibitors. Additionally, our data indicate that the signaling output upon loss or downregulation of one RAF isoform can be compensated by overexpression of other RAF isoforms. We furthermore demonstrate that, while single RAF inhibitors cannot efficiently inhibit ERK reactivation caused by RAF overexpression, a combination of two structurally distinct RAF inhibitors synergizes to robustly suppress pathway reactivation.


Asunto(s)
Regulación hacia Arriba , Simulación por Computador , Regulación hacia Abajo , Conformación Molecular , Resistencia a Medicamentos
7.
Cell Rep ; 35(8): 109157, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34038718

RESUMEN

Increasing evidence suggests that the reactivation of initially inhibited signaling pathways causes drug resistance. Here, we analyze how network topologies affect signaling responses to drug treatment. Network-dependent drug resistance is commonly attributed to negative and positive feedback loops. However, feedback loops by themselves cannot completely reactivate steady-state signaling. Newly synthesized negative feedback regulators can induce a transient overshoot but cannot fully restore output signaling. Complete signaling reactivation can only occur when at least two routes, an activating and inhibitory, connect an inhibited upstream protein to a downstream output. Irrespective of the network topology, drug-induced overexpression or increase in target dimerization can restore or even paradoxically increase downstream pathway activity. Kinase dimerization cooperates with inhibitor-mediated alleviation of negative feedback. Our findings inform drug development by considering network context and optimizing the design drug combinations. As an example, we predict and experimentally confirm specific combinations of RAF inhibitors that block mutant NRAS signaling.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Transducción de Señal
8.
Nat Commun ; 11(1): 499, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980649

RESUMEN

Protein-protein-interaction networks (PPINs) organize fundamental biological processes, but how oncogenic mutations impact these interactions and their functions at a network-level scale is poorly understood. Here, we analyze how a common oncogenic KRAS mutation (KRASG13D) affects PPIN structure and function of the Epidermal Growth Factor Receptor (EGFR) network in colorectal cancer (CRC) cells. Mapping >6000 PPIs shows that this network is extensively rewired in cells expressing transforming levels of KRASG13D (mtKRAS). The factors driving PPIN rewiring are multifactorial including changes in protein expression and phosphorylation. Mathematical modelling also suggests that the binding dynamics of low and high affinity KRAS interactors contribute to rewiring. PPIN rewiring substantially alters the composition of protein complexes, signal flow, transcriptional regulation, and cellular phenotype. These changes are validated by targeted and global experimental analysis. Importantly, genetic alterations in the most extensively rewired PPIN nodes occur frequently in CRC and are prognostic of poor patient outcomes.


Asunto(s)
Transformación Celular Neoplásica/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Receptores ErbB/metabolismo , Mutación/genética , Mapas de Interacción de Proteínas , Proteínas Proto-Oncogénicas p21(ras)/genética , Línea Celular Tumoral , Humanos , Fosforilación , Pronóstico , Análisis de Supervivencia , Proteína Letal Asociada a bcl/metabolismo
9.
Cell Rep ; 24(5): 1316-1329, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30067985

RESUMEN

Cellular p53 protein levels are regulated by a ubiquitination/de-ubiquitination cycle that can target the protein for proteasomal destruction. The ubiquitination reaction is catalyzed by a multitude of ligases, whereas the removal of ubiquitin chains is mediated by two deubiquitinating enzymes (DUBs), USP7 (HAUSP) and USP10. Here, we show that PHD3 hydroxylates p53 at proline 359, a residue that is in the p53-DUB binding domain. Hydroxylation of p53 upon proline 359 regulates its interaction with USP7 and USP10, and its inhibition decreases the association of p53 with USP7/USP10, increases p53 ubiquitination, and rapidly reduces p53 protein levels independently of mRNA expression. Our results show that p53 is a PHD3 substrate and that hydroxylation by PHD3 regulates p53 protein stability through modulation of ubiquitination.


Asunto(s)
Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación , Sitios de Unión , Células HEK293 , Humanos , Unión Proteica , Estabilidad Proteica , Proteína p53 Supresora de Tumor/química , Ubiquitina Tiolesterasa/metabolismo , Peptidasa Específica de Ubiquitina 7/metabolismo
10.
Cell Syst ; 7(2): 161-179.e14, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30007540

RESUMEN

Clinically used RAF inhibitors are ineffective in RAS mutant tumors because they enhance homo- and heterodimerization of RAF kinases, leading to paradoxical activation of ERK signaling. Overcoming enhanced RAF dimerization and the resulting resistance is a challenge for drug design. Combining multiple inhibitors could be more effective, but it is unclear how the best combinations can be chosen. We built a next-generation mechanistic dynamic model to analyze combinations of structurally different RAF inhibitors, which can efficiently suppress MEK/ERK signaling. This rule-based model of the RAS/ERK pathway integrates thermodynamics and kinetics of drug-protein interactions, structural elements, posttranslational modifications, and cell mutational status as model rules to predict RAF inhibitor combinations for inhibiting ERK activity in oncogenic RAS and/or BRAFV600E backgrounds. Predicted synergistic inhibition of ERK signaling was corroborated by experiments in mutant NRAS, HRAS, and BRAFV600E cells, and inhibition of oncogenic RAS signaling was associated with reduced cell proliferation and colony formation.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Quinasas raf/antagonistas & inhibidores , Proteínas ras/metabolismo , Línea Celular Tumoral , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Simulación del Acoplamiento Molecular , Mutación/efectos de los fármacos , Neoplasias/genética , Neoplasias/metabolismo , Multimerización de Proteína/efectos de los fármacos , Termodinámica , Quinasas raf/química , Quinasas raf/metabolismo , Proteínas ras/genética
11.
PLoS One ; 12(2): e0171435, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28192450

RESUMEN

We have developed a novel analysis method that can interrogate the authenticity of biological samples used for generation of transcriptome profiles in public data repositories. The method uses RNA sequencing information to reveal mutations in expressed transcripts and subsequently confirms the identity of analysed cells by comparison with publicly available cell-specific mutational profiles. Cell lines constitute key model systems widely used within cancer research, but their identity needs to be confirmed in order to minimise the influence of cell contaminations and genetic drift on the analysis. Using both public and novel data, we demonstrate the use of RNA-sequencing data analysis for cell line authentication by examining the validity of COLO205, DLD1, HCT15, HCT116, HKE3, HT29 and RKO colorectal cancer cell lines. We successfully authenticate the studied cell lines and validate previous reports indicating that DLD1 and HCT15 are synonymous. We also show that the analysed HKE3 cells harbour an unexpected KRAS-G13D mutation and confirm that this cell line is a genuine KRAS dosage mutant, rather than a true isogenic derivative of HCT116 expressing only the wild type KRAS. This authentication method could be used to revisit the numerous cell line based RNA sequencing experiments available in public data repositories, analyse new experiments where whole genome sequencing is not available, as well as facilitate comparisons of data from different experiments, platforms and laboratories.


Asunto(s)
Análisis Mutacional de ADN/métodos , Mutación , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Células HCT116 , Células HT29 , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Reproducibilidad de los Resultados
12.
Cell Signal ; 28(10): 1451-62, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27368419

RESUMEN

RAF family kinases are central components of the Ras-RAF-MEK-ERK cascade. Dimerization is a key mechanism of RAF activation in response to physiological, pathological and pharmacological signals. It is mediated by a dimer interface region in the RAF kinase domain that is also conserved in KSR, a scaffolding protein that binds RAF, MEK and ERK. The regulation of RAF dimerization is incompletely understood. Especially little is known about the molecular mechanism involved in the selection of the dimerization partner. Previously, we reported that Ras-dependent binding of the tumour suppressor DiRas3 to C-RAF inhibits the C-RAF:B-RAF heterodimerization. Here we show that DiRas3 binds to KSR1 independently of its interaction with activated Ras and RAF. Our data also suggest that depending on the local stoichiometry between DiRas3 and oncogenic Ras, DiRas3 can either enhance homodimerization of KSR1 or recruit KSR1 to the Ras:C-RAF complex and thereby reduce the availability of C-RAF for binding to B-RAF. This mechanism, which is shared between A-RAF and C-RAF, may be involved in the regulation of Ras12V-induced cell transformation by DiRas3.


Asunto(s)
Complejos Multiproteicos/metabolismo , Proteínas Quinasas/metabolismo , Multimerización de Proteína , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Proliferación Celular , Transformación Celular Neoplásica , Espacio Intracelular/metabolismo , Ratones , Células 3T3 NIH , Unión Proteica , Estabilidad Proteica , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Fracciones Subcelulares/metabolismo
13.
Curr Opin Struct Biol ; 41: 151-158, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27521656

RESUMEN

The RAS/RAF/MEK/MAPK kinase pathway has been extensively studied for more than 25 years, yet we continue to be puzzled by its intricate dynamic control and plasticity. Different spatiotemporal MAPK dynamics bring about distinct cell fate decisions in normal vs cancer cells and developing organisms. Recent modelling and experimental studies provided novel insights in the versatile MAPK dynamics concerted by a plethora of feedforward/feedback regulations and crosstalk on multiple timescales. Multiple cancer types and various developmental disorders arise from persistent alterations of the MAPK dynamics caused by RAS/RAF/MEK mutations. While a key role of the MAPK pathway in multiple diseases made the development of novel RAF/MEK inhibitors a hot topic of drug development, these drugs have unexpected side-effects and resistance inevitably occurs. We review how RAF dimerization conveys drug resistance and recent breakthroughs to overcome this resistance.


Asunto(s)
Resistencia a Antineoplásicos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neoplasias/patología , Animales , Carcinogénesis/efectos de los fármacos , Humanos , Proteínas Quinasas Activadas por Mitógenos/química , Neoplasias/tratamiento farmacológico , Multimerización de Proteína/efectos de los fármacos
14.
Cell Rep ; 14(11): 2745-60, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26972000

RESUMEN

Amino acid hydroxylation is a post-translational modification that regulates intra- and inter-molecular protein-protein interactions. The modifications are regulated by a family of 2-oxoglutarate- (2OG) dependent enzymes and, although the biochemistry is well understood, until now only a few substrates have been described for these enzymes. Using quantitative interaction proteomics, we screened for substrates of the proline hydroxylase PHD3 and the asparagine hydroxylase FIH, which regulate the HIF-mediated hypoxic response. We were able to identify hundreds of potential substrates. Enrichment analysis revealed that the potential substrates of both hydroxylases cluster in the same pathways but frequently modify different nodes of signaling networks. We confirm that two proteins identified in our screen, MAPK6 (Erk3) and RIPK4, are indeed hydroxylated in a FIH- or PHD3-dependent mechanism. We further determined that FIH-dependent hydroxylation regulates RIPK4-dependent Wnt signaling, and that PHD3-dependent hydroxylation of MAPK6 protects the protein from proteasomal degradation.


Asunto(s)
Prolina Dioxigenasas del Factor Inducible por Hipoxia/metabolismo , Oxigenasas de Función Mixta/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Aminoácidos Dicarboxílicos/química , Cromatografía Líquida de Alta Presión , Células HEK293 , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Prolina Dioxigenasas del Factor Inducible por Hipoxia/antagonistas & inhibidores , Prolina Dioxigenasas del Factor Inducible por Hipoxia/genética , Immunoblotting , Inmunoprecipitación , Proteína Quinasa 6 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 6 Activada por Mitógenos/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Péptidos/análisis , Péptidos/química , Mapas de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Transducción de Señal , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Especificidad por Sustrato , Ubiquitinación
15.
Cell Signal ; 28(9): 1432-1439, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27345148

RESUMEN

The BRAF proto-oncogene serine/threonine-protein kinase, known as BRAF, belongs to the RAF kinase family. It regulates the MAPK/ERK signalling pathway affecting several cellular processes such as growth, survival, differentiation, and cellular transformation. BRAF is mutated in ~8% of all human cancers with the V600E mutation constituting ~90% of mutations. Here, we have used quantitative mass spectrometry to map and compare phosphorylation site patterns between BRAF and BRAF V600E. We identified sites that are shared as well as several quantitative differences in phosphorylation abundance. The highest difference is phosphorylation of S614 in the activation loop which is ~5fold enhanced in BRAF V600E. Mutation of S614 increases the kinase activity of both BRAF and BRAF V600E and the transforming ability of BRAF V600E. The phosphorylation of S614 is mitogen inducible and the result of autophosphorylation. These data suggest that phosphorylation at this site is inhibitory, and part of the physiological shut-down mechanism of BRAF signalling.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Fosfoserina/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Humanos , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mutación/genética , Fosforilación , Unión Proteica , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas B-raf/química , Ratas
16.
Sci Signal ; 8(408): ra130, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26696630

RESUMEN

Signaling pathways control cell fate decisions that ultimately determine the behavior of cancer cells. Therefore, the dynamics of pathway activity may contain prognostically relevant information different from that contained in the static nature of other types of biomarkers. To investigate this hypothesis, we characterized the network that regulated stress signaling by the c-Jun N-terminal kinase (JNK) pathway in neuroblastoma cells. We generated an experimentally calibrated and validated computational model of this network and used the model to extract prognostic information from neuroblastoma patient-specific simulations of JNK activation. Switch-like JNK activation mediates cell death by apoptosis. An inability to initiate switch-like JNK activation in the simulations was significantly associated with poor overall survival for patients with neuroblastoma with or without MYCN amplification, indicating that patient-specific simulations of JNK activation could stratify patients. Furthermore, our analysis demonstrated that extracting information about a signaling pathway to develop a prognostically useful model requires understanding of not only components and disease-associated changes in the abundance or activity of the components but also how those changes affect pathway dynamics.


Asunto(s)
Biomarcadores de Tumor/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Modelos Biológicos , Neuroblastoma/metabolismo , Neuroblastoma/mortalidad , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/metabolismo , Transducción de Señal , Adolescente , Animales , Línea Celular Tumoral , Niño , Preescolar , Supervivencia sin Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Lactante , Masculino , Proteína Proto-Oncogénica N-Myc , Neoplasias Experimentales/metabolismo , Valor Predictivo de las Pruebas , Tasa de Supervivencia , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA