Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Bacteriol ; 194(10): 2630-6, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22427631

RESUMEN

The major staphylococcal autolysin Atl is an important player in cell separation and daughter cell formation. In this study, we investigated the amino acid sequences of Atl proteins derived from 15 staphylococcal and 1 macrococcal species representatives. The overall organization of the bifunctional precursor protein consisting of the signal peptide, a propeptide (PP), the amidase (AM), six repeat sequences (R(1) to R(6)), and the glucosaminidase (GL) was highly conserved in all of the species. The most-conserved domains were the enzyme domains AM and GL; the least-conserved regions were the PP and R regions. An Atl-based phylogenetic tree for the various species representatives correlated well with the corresponding 16S rRNA-based tree and also perfectly matched the phylogenetic trees based on core genome analysis. The phylogenetic distance analysis of 18 AtlA proteins of various Staphylococcus aureus strains and 15 AtlE proteins of S. epidermidis revealed that both species representatives formed a relatively homogeneous cluster. Two S. epidermidis strains, M23864:W1 and VCU116, were identified by Atl typing that clustered far more distantly and belonged to either S. caprae and S. capitis or a new subspecies. Here we show that Atl typing is a useful tool for staphylococcal genus and species typing by using either the highly conserved AM domain or the less-conserved PP domain.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Staphylococcus/clasificación , Staphylococcus/enzimología , Genoma Bacteriano , N-Acetil Muramoil-L-Alanina Amidasa/genética , Filogenia , Estructura Terciaria de Proteína , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Especificidad de la Especie
2.
Front Microbiol ; 11: 2061, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983045

RESUMEN

The skin colonizing coagulase-negative Staphylococcus epidermidis causes nosocomial infections and is an important opportunistic and highly adaptable pathogen. To gain more insight into this species, we sequenced the genome of the biofilm positive, methicillin susceptible S. epidermidis O47 strain (hereafter O47). This strain belongs to the most frequently isolated sequence type 2. In comparison to the RP62A strain, O47 can be transformed, which makes it a preferred strain for molecular studies. S. epidermidis O47's genome has a single chromosome of about 2.5 million base pairs and no plasmid. Its oriC sequence has the same directionality as S. epidermidis RP62A, S. carnosus, S. haemolyticus, S. saprophyticus and is inverted in comparison to Staphylococcus aureus and S. epidermidis ATCC 12228. A phylogenetic analysis based on all S. epidermidis genomes currently available at GenBank revealed that O47 is closest related to DAR1907. The genome of O47 contains genes for the typical global regulatory systems known in staphylococci. In addition, it contains most of the genes encoding for the typical virulence factors for S. epidermidis but not for S. aureus with the exception of a putative hemolysin III. O47 has the typical S. epidermidis genetic islands and several mobile genetic elements, which include staphylococcal cassette chromosome (SCC) of about 54 kb length and two prophages φO47A and φO47B. However, its genome has no transposons and the smallest number of insertion sequence (IS) elements compared to the other known S. epidermidis genomes. By sequencing and analyzing the genome of O47, we provide the basis for its utilization in genetic and molecular studies of biofilm formation.

3.
Front Psychiatry ; 10: 834, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31798479

RESUMEN

The metabolic syndrome (MetS) comprises abdominal obesity, preclinical or full diabetes type 2, arterial hypertension, and dyslipidemia and affects a significant proportion of the general population with a remarkably higher prevalence in patients suffering from psychiatric disorders. However, studies exploring the pathogenetic link between MetS and psychiatric diseases are rare. Here, we aim to narrow this gap in knowledge by providing a narrative review on this topic that focuses on two psychiatric diseases, namely on schizophrenia and posttraumatic stress disorder (PTSD) since we assume them to be associated with two different main causalities of MetS: in schizophrenia, MetS evidently develops or aggravates in response to antipsychotic drug treatment while it assumingly develops in response to stress-induced endocrine and/or epigenetic alterations in PTSD. First, we compared the prevalences of MetS and associated pathologies (which we took from the latest meta-analyses) among different psychiatric disorders and were surprised that the prevalences of arterial hypertension and hyperglycemia in PTSD almost doubles those of the other psychiatric disorders. Next, we performed a literature search on the neurobiology of MetS and found numerous articles describing a role for proopiomelanocortin (POMC) in MetS. Thus, we concentrated further analysis on POMC and one of its downstream effector hormones, α-melanocyte-stimulating hormone (α-MSH). We found some evidence for a role of POMC in both PTSD and schizophrenia, in particular in antipsychotic-induced MetS, as well as for α-MSH in schizophrenia, but, surprisingly, no study on α-MSH in PTSD. Taken together, our synopsis reveals, first, a potential interaction between the POMC system and stress in the assumingly at least partially shared pathogenesis of psychiatric disorders and MetS, second, that modulation of the POMC system, in particular of the melanocortin 3 and 4 receptors, might be a promising target for the treatment of MetS and, third, that the DNA methylation status of POMC might speculatively be a promising biomarker for MetS in general and, possibly, in particular in the context of stress-related psychiatric conditions such as PTSD. To best of our knowledge, this is the first review on the role of the POMC system in MetS in psychiatric disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA