Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 39(14): 5095-5106, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37010500

RESUMEN

The combination of molecular catalysts and semiconductor substrates in hybrid heterogeneous photo- or electrocatalytic devices could yield synergistic effects that result in enhanced activity and long-term stability. The extent of synergy strongly depends on the electronic interactions and energy level alignment between the molecular states and the valence and conduction band of the substrate. These properties of hybrid interfaces are investigated for a model system composed of protoporphyrin IX (PPIX) as a stand-in for molecular catalysts and a variety of semiconductor substrates. Monolayers of PPIX are deposited using Langmuir-Blodgett deposition. Their morphology is studied in dependence of the deposition surface pressure to achieve a high-quality, dense coverage. By making use of ultraviolet-visible spectroscopy and ultraviolet photoelectron spectroscopy, the band alignment is determined by the vacuum level and incorporates an interface dipole of 0.4 eV independent of the substrate. The HOMO, LUMO, and LUMO+1 levels were determined to be at 5.6, 3.7, and 2.7 eV below the vacuum level, respectively. The quenching of PPIX photoluminescence in dependence of the potential gradient between excited state and electron affinity of the semiconductor substrates is overall in good agreement with electron transfer processes occurring at very fast time scales on the order of femtoseconds. Nevertheless, deviations from this model become apparent for narrower band gap semiconductors, which points to an additional relevance of other processes, such as energy transfer. These findings highlight the importance of matching the semiconductor to the molecular catalyst to prevent undesirable deactivation pathways.

2.
Nanotechnology ; 34(17)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36669201

RESUMEN

Nanostructures exhibit a large surface-to-volume ratio, which makes them sensitive to their ambient conditions. In particular, GaN nanowires and nanofins react to their environment as adsorbates influence their (opto-) electronic properties. Charge transfer between the semiconductor surface and adsorbed species changes the surface band bending of the nanostructures, and the adsorbates can alter the rate of non-radiative recombination in GaN. Despite the importance of these interactions with the ambient environment, the detailed adsorption mechanisms are still not fully understood. In this article, we present a systematic study concerning the environmental sensitivity of the electrical conductivity of GaN nanofins. We identify oxygen- and water-based adsorbates to be responsible for a quenching of the electrical current through GaN nanofins due to an increased surface band bending. Complementary contact potential difference measurements in controlled atmospheres on bulkm- andc-plane GaN reveal additional complexity with regard to water adsorption, for which surface dipoles might play an important role besides an increased surface depletion width. The sensitive reaction of the electrical parameters to the environment and surface condition underlines the necessity of a reproducible pre-treatment and/or surface passivation. The presented results help to further understand the complex adsorption mechanisms at GaN surfaces. Due to the sensitivity of the nanofin conductivity on the environment, such structures could perform well as sensing devices.

3.
Proc Natl Acad Sci U S A ; 117(48): 30577-30588, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199619

RESUMEN

Crossovers generated during the repair of programmed meiotic double-strand breaks must be tightly regulated to promote accurate homolog segregation without deleterious outcomes, such as aneuploidy. The Mlh1-Mlh3 (MutLγ) endonuclease complex is critical for crossover resolution, which involves mechanistically unclear interplay between MutLγ and Exo1 and polo kinase Cdc5. Using budding yeast to gain temporal and genetic traction on crossover regulation, we find that MutLγ constitutively interacts with Exo1. Upon commitment to crossover repair, MutLγ-Exo1 associate with recombination intermediates, followed by direct Cdc5 recruitment that triggers MutLγ crossover activity. We propose that Exo1 serves as a central coordinator in this molecular interplay, providing a defined order of interaction that prevents deleterious, premature activation of crossovers. MutLγ associates at a lower frequency near centromeres, indicating that spatial regulation across chromosomal regions reduces risky crossover events. Our data elucidate the temporal and spatial control surrounding a constitutive, potentially harmful, nuclease. We also reveal a critical, noncatalytic role for Exo1, through noncanonical interaction with polo kinase. These mechanisms regulating meiotic crossovers may be conserved across species.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Intercambio Genético , Exodesoxirribonucleasas/metabolismo , Meiosis/genética , Proteínas MutL/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Proteínas de Ciclo Celular/genética , Cromosomas Fúngicos , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Recombinación Genética
4.
ACS Appl Mater Interfaces ; 16(5): 6653-6664, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38267016

RESUMEN

Attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) is a powerful method for probing interfacial chemical processes. However, SEIRAS-active nanostructured metallic thin films for the in situ analysis of electrochemical phenomena are often unstable under biased aqueous conditions. In this work, we present a surface-enhancing structure based on etched black Si internal reflection elements with Au-coatings for in situ electrochemical ATR-SEIRAS. Using electrochemical potential-dependent adsorption and desorption of 4-methoxypyridine on Au, we demonstrate that black Si-based substrates offer advantages over commonly used structures, such as electroless-deposited Au on Si and electrodeposited Au on ITO-coated Si, due to the combination of high stability, sensitivity, and conductivity. These characteristics are especially valuable for time-resolved measurements where stable substrates are required over extended times. Furthermore, the low sheet resistance of Au layers on black Si reduces the RC time constant of the electrochemical cell, enabling a significantly higher time resolution compared to that of traditional substrates. Thus, we employ black Si-based substrates in conjunction with rapid- and step-scan Fourier transform infrared (FTIR) spectroscopy to investigate the adsorption and desorption kinetics of 4-methoxypyridine during in situ electrochemical potential steps. Adsorption is shown to be diffusion-limited, which allows for the determination of the mean molecular area in a fully established monolayer. Moreover, no significant changes in the peak ratios of vibrational modes with different orientations relative to the molecular axis are observed, suggesting a single adsorption mode and no alteration of the average molecular orientation during the adsorption process. Overall, this study highlights the enhanced performance of black Si-based substrates for both steady-state and time-resolved in situ electrochemical ATR-SEIRAS, providing a powerful platform for kinetic and mechanistic investigations of electrochemical interfaces.

5.
ACS Nano ; 17(11): 10423-10430, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37220255

RESUMEN

Antiferromagnets are promising materials for future opto-spintronic applications since they show spin dynamics in the THz range and no net magnetization. Recently, layered van der Waals (vdW) antiferromagnets have been reported, which combine low-dimensional excitonic properties with complex spin-structure. While various methods for the fabrication of vdW 2D crystals exist, formation of large area and continuous thin films is challenging because of either limited scalability, synthetic complexity, or low opto-spintronic quality of the final material. Here, we fabricate centimeter-scale thin films of the van der Waals 2D antiferromagnetic material NiPS3, which we prepare using a crystal ink made from liquid phase exfoliation (LPE). We perform statistical atomic force microscopy (AFM) and scanning electron microscopy (SEM) to characterize and control the lateral size and number of layers through this ink-based fabrication. Using ultrafast optical spectroscopy at cryogenic temperatures, we resolve the dynamics of photoexcited excitons. We find antiferromagnetic spin arrangement and spin-entangled Zhang-Rice multiplet excitons with lifetimes in the nanosecond range, as well as ultranarrow emission line widths, despite the disordered nature of our films. Thus, our findings demonstrate scalable thin-film fabrication of high-quality NiPS3, which is crucial for translating this 2D antiferromagnetic material into spintronic and nanoscale memory devices and further exploring its complex spin-light coupled states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA