Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 140(5): 744-52, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20211142

RESUMEN

Combinatorial interactions among transcription factors are critical to directing tissue-specific gene expression. To build a global atlas of these combinations, we have screened for physical interactions among the majority of human and mouse DNA-binding transcription factors (TFs). The complete networks contain 762 human and 877 mouse interactions. Analysis of the networks reveals that highly connected TFs are broadly expressed across tissues, and that roughly half of the measured interactions are conserved between mouse and human. The data highlight the importance of TF combinations for determining cell fate, and they lead to the identification of a SMAD3/FLI1 complex expressed during development of immunity. The availability of large TF combinatorial networks in both human and mouse will provide many opportunities to study gene regulation, tissue differentiation, and mammalian evolution.


Asunto(s)
Regulación de la Expresión Génica , Redes Reguladoras de Genes , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Evolución Molecular , Humanos , Ratones , Monocitos/citología , Especificidad de Órganos , Proteína smad3/metabolismo , Transactivadores/metabolismo
2.
BMC Genomics ; 25(1): 635, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918719

RESUMEN

BACKGROUND: The nervous system is central to coordinating behavioural responses to environmental change, likely including ocean acidification (OA). However, a clear understanding of neurobiological responses to OA is lacking, especially for marine invertebrates. RESULTS: We evaluated the transcriptomic response of the central nervous system (CNS) and eyes of the two-toned pygmy squid (Idiosepius pygmaeus) to OA conditions, using a de novo transcriptome assembly created with long read PacBio ISO-sequencing data. We then correlated patterns of gene expression with CO2 treatment levels and OA-affected behaviours in the same individuals. OA induced transcriptomic responses within the nervous system related to various different types of neurotransmission, neuroplasticity, immune function and oxidative stress. These molecular changes may contribute to OA-induced behavioural changes, as suggested by correlations among gene expression profiles, CO2 treatment and OA-affected behaviours. CONCLUSIONS: This study provides the first molecular insights into the neurobiological effects of OA on a cephalopod and correlates molecular changes with whole animal behavioural responses, helping to bridge the gaps in our knowledge between environmental change and animal responses.


Asunto(s)
Conducta Animal , Dióxido de Carbono , Transcriptoma , Animales , Conducta Animal/efectos de los fármacos , Dióxido de Carbono/metabolismo , Agua de Mar/química , Concentración de Iones de Hidrógeno , Decapodiformes/genética , Perfilación de la Expresión Génica , Cefalópodos/genética , Océanos y Mares , Acidificación de los Océanos
3.
Proc Biol Sci ; 291(2015): 20232206, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38290546

RESUMEN

Climate-driven species redistributions are facilitated by niche modifications that increase a species's chances of establishment in novel communities. It is well understood how range-extending species adjust individual niche traits when entering novel environments, yet whether modification of ecological niche traits collectively alters the pace of range extensions or contractions remains unknown. We quantified habitat niche, abundance, physiological performance and cellular defence/damage of range-extending coral reef fishes and coexisting local temperate fishes along a 2000 km latitudinal gradient. We also assessed their dietary and behavioural niches, and establishment potential, to understand whether ecological generalism facilitates successful range extension of coral reef fishes. The coral reef fish that increased all ecological niches, showed stronger establishment, increased physiological performance and cellular damage, but decreased cellular defence at their cold-range edge, whereas tropical species that showed unmodified ecological niches showed lower establishment. One temperate species showed decreased abundance, habitat niche width and body condition, but increased cellular defence, cellular damage and energy reserves at their warm-trailing range, while other temperate species showed contrasting responses. Therefore, ecological generalists might be more successful than ecological specialists during the initial stages of climate change, with increasing future warming strengthening this pattern by physiologically benefitting tropical generalists but disadvantaging temperate specialists.


Asunto(s)
Antozoos , Ecosistema , Animales , Arrecifes de Coral , Peces/fisiología , Cambio Climático , Océanos y Mares
4.
J Anim Ecol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926938

RESUMEN

Climate change stressors are progressively simplifying biogenic habitats in the terrestrial and marine realms, and consequently altering the structure of associated species communities. Here, we used a volcanic CO2 seep in Papua New Guinea to test in situ if altered reef architecture due to ocean acidification reshuffles associated fish assemblages. We observed replacement of branching corals by massive corals at the seep, with simplified coral architectural complexity driving abundance declines between 60% and 86% for an assemblage of damselfishes associated with branching corals. An experimental test of habitat preference for a focal species indicated that acidification does not directly affect habitat selection behaviour, with changes in habitat structural complexity consequently appearing to be the stronger driver of assemblage reshuffling. Habitat health affected anti-predator behaviour, with P. moluccensis becoming less bold on dead branching corals relative to live branching corals, irrespective of ocean acidification. We conclude that coral reef fish assemblages are likely to be more sensitive to changes in habitat structure induced by increasing pCO2 than any direct effects on behaviour, indicating that changes in coral architecture and live cover may act as important mediators of reef fish community structures in a future ocean.

5.
Reg Environ Change ; 23(2): 66, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37125023

RESUMEN

Nearly a billion people depend on tropical seascapes. The need to ensure sustainable use of these vital areas is recognised, as one of 17 policy commitments made by world leaders, in Sustainable Development Goal (SDG) 14 ('Life below Water') of the United Nations. SDG 14 seeks to secure marine sustainability by 2030. In a time of increasing social-ecological unpredictability and risk, scientists and policymakers working towards SDG 14 in the Asia-Pacific region need to know: (1) How are seascapes changing? (2) What can global society do about these changes? and (3) How can science and society together achieve sustainable seascape futures? Through a horizon scan, we identified nine emerging research priorities that clarify potential research contributions to marine sustainability in locations with high coral reef abundance. They include research on seascape geological and biological evolution and adaptation; elucidating drivers and mechanisms of change; understanding how seascape functions and services are produced, and how people depend on them; costs, benefits, and trade-offs to people in changing seascapes; improving seascape technologies and practices; learning to govern and manage seascapes for all; sustainable use, justice, and human well-being; bridging communities and epistemologies for innovative, equitable, and scale-crossing solutions; and informing resilient seascape futures through modelling and synthesis. Researchers can contribute to the sustainability of tropical seascapes by co-developing transdisciplinary understandings of people and ecosystems, emphasising the importance of equity and justice, and improving knowledge of key cross-scale and cross-level processes, feedbacks, and thresholds.

6.
Glob Chang Biol ; 28(9): 3007-3022, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35238117

RESUMEN

Ocean acidification (OA) is postulated to affect the physiology, behavior, and life-history of marine species, but potential for acclimation or adaptation to elevated pCO2 in wild populations remains largely untested. We measured brain transcriptomes of six coral reef fish species at a natural volcanic CO2  seep and an adjacent control reef in Papua New Guinea. We show that elevated pCO2 induced common molecular responses related to circadian rhythm and immune system but different magnitudes of molecular response across the six species. Notably, elevated transcriptional plasticity was associated with core circadian genes affecting the regulation of intracellular pH and neural activity in Acanthochromis polyacanthus. Gene expression patterns were reversible in this species as evidenced upon reduction of CO2 following a natural storm-event. Compared with other species, Ac. polyacanthus has a more rapid evolutionary rate and more positively selected genes in key functions under the influence of elevated CO2 , thus fueling increased transcriptional plasticity. Our study reveals the basis to variable gene expression changes across species, with some species possessing evolved molecular toolkits to cope with future OA.


Asunto(s)
Dióxido de Carbono , Agua de Mar , Animales , Dióxido de Carbono/análisis , Arrecifes de Coral , Concentración de Iones de Hidrógeno , Océanos y Mares , Agua de Mar/química
7.
Proc Biol Sci ; 288(1964): 20211931, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34875194

RESUMEN

Knowledge of adaptive potential is crucial to predicting the impacts of ocean acidification (OA) on marine organisms. In the spiny damselfish, Acanthochromis polyacanthus, individual variation in behavioural tolerance to elevated pCO2 has been observed and is associated with offspring gene expression patterns in the brain. However, the maternal and paternal contributions of this variation are unknown. To investigate parental influence of behavioural pCO2 tolerance, we crossed pCO2-tolerant fathers with pCO2-sensitive mothers and vice versa, reared their offspring at control and elevated pCO2 levels, and compared the juveniles' brain transcriptional programme. We identified a large influence of parental phenotype on expression patterns of offspring, irrespective of environmental conditions. Circadian rhythm genes, associated with a tolerant parental phenotype, were uniquely expressed in tolerant mother offspring, while tolerant fathers had a greater role in expression of genes associated with histone binding. Expression changes in genes associated with neural plasticity were identified in both offspring types: the maternal line had a greater effect on genes related to neuron growth while paternal influence impacted the expression of synaptic development genes. Our results confirm cellular mechanisms involved in responses to varying lengths of OA exposure, while highlighting the parental phenotype's influence on offspring molecular phenotype.


Asunto(s)
Arrecifes de Coral , Perciformes , Animales , Dióxido de Carbono , Peces/fisiología , Concentración de Iones de Hidrógeno , Perciformes/genética , Agua de Mar/química
8.
Mol Ecol ; 30(20): 5105-5118, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34402113

RESUMEN

Environmental partial pressure of CO2 (pCO2 ) variation can modify the responses of marine organisms to ocean acidification, yet the underlying mechanisms for this effect remain unclear. On coral reefs, environmental pCO2  fluctuates on a regular day-night cycle. Effects of future ocean acidification on coral reef fishes might therefore depend on their response to this diel cycle of pCO2 . To evaluate the effects on the brain molecular response, we exposed two common reef fishes (Acanthochromis polyacanthus and Amphiprion percula) to two projected future pCO2  levels (750 and 1,000 µatm) under both stable and diel fluctuating conditions. We found a common signature to stable elevated pCO2 for both species, which included the downregulation of immediate early genes, indicating lower brain activity. The transcriptional programme was more strongly affected by higher average pCO2 in a stable treatment than for fluctuating treatments, but the largest difference in molecular response was between stable and fluctuating pCO2 treatments. This indicates that a response to a change in environmental pCO2 conditions is different for organisms living in a fluctuating than in stable environments. This differential regulation was related to steroid hormones and circadian rhythm (CR). Both species exhibited a marked difference in the expression of CR genes among pCO2 treatments, possibly accommodating a more flexible adaptive approach in the response to environmental changes. Our results suggest that environmental pCO2  fluctuations might enable reef fishes to phase-shift their clocks and anticipate pCO2 changes, thereby avoiding impairments and more successfully adjust to ocean acidification conditions.


Asunto(s)
Arrecifes de Coral , Agua de Mar , Animales , Dióxido de Carbono/análisis , Peces , Concentración de Iones de Hidrógeno , Océanos y Mares
10.
J Nanobiotechnology ; 18(1): 42, 2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32164746

RESUMEN

BACKGROUND: Identifying the precise location of cells and their migration dynamics is of utmost importance for achieving the therapeutic potential of cells after implantation into a host. Magnetic resonance imaging is a suitable, non-invasive technique for cell monitoring when used in combination with contrast agents. RESULTS: This work shows that nanowires with an iron core and an iron oxide shell are excellent materials for this application, due to their customizable magnetic properties and biocompatibility. The longitudinal and transverse magnetic relaxivities of the core-shell nanowires were evaluated at 1.5 T, revealing a high performance as T2 contrast agents. Different levels of oxidation and various surface coatings were tested at 7 T. Their effects on the T2 contrast were reflected in the tailored transverse relaxivities. Finally, the detection of nanowire-labeled breast cancer cells was demonstrated in T2-weighted images of cells implanted in both, in vitro in tissue-mimicking phantoms and in vivo in mouse brain. Labeling the cells with a nanowire concentration of 0.8 µg of Fe/mL allowed the detection of 25 cells/µL in vitro, diminishing the possibility of side effects. This performance enabled an efficient labelling for high-resolution cell detection after in vivo implantation (~ 10 nanowire-labeled cells) over a minimum of 40 days. CONCLUSIONS: Iron-iron oxide core-shell nanowires enabled the efficient and longitudinal cellular detection through magnetic resonance imaging acting as T2 contrast agents. Combined with the possibility of magnetic guidance as well as triggering of cellular responses, for instance by the recently discovered strong photothermal response, opens the door to new horizons in cell therapy and make iron-iron oxide core-shell nanowires a promising theranostic platform.


Asunto(s)
Rastreo Celular/métodos , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita , Nanocables , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Línea Celular , Compuestos Férricos , Hierro , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Fantasmas de Imagen , Nanomedicina Teranóstica
11.
Mol Ecol ; 27(22): 4516-4528, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30267545

RESUMEN

Global warming will have far-reaching consequences for marine species over coming decades, yet the magnitude of these effects may depend on the rate of warming across generations. Recent experiments show coral reef fishes can compensate the metabolic challenges of elevated temperature when warm conditions are maintained across generations. However, the effects of a gradual temperature increase across generations remain unknown. In the present study, we analysed metabolic and molecular traits in the damselfish Acanthochromis polyacanthus that were exposed to +1.5°C in the first generation and +3.0°C in the second (Step +3.0°C). This treatment of stepwise warming was compared to fish reared at current-day temperatures (Control), second-generation fish of control parents reared at +3.0°C (Developmental +3.0°C) and fish exposed to elevated temperatures for two generations (Transgenerational +1.5°C and Transgenerational +3.0°C). Hepatosomatic index, oxygen consumption and liver gene expression were compared in second-generation fish of the multiple treatments. Hepatosomatic index increased in fish that developed at +3.0°C, regardless of the parental temperature. Routine oxygen consumption of Step +3.0°C fish was significantly higher than Control; however, their aerobic scope recovered to the same level as Control fish. Step +3.0°C fish exhibited significant upregulation of genes related to mitochondrial activity and energy production, which could be associated with their increased metabolic rates. These results indicate that restoration of aerobic scope is possible when fish experience gradual thermal increase across multiple generations, but the metabolic and molecular responses are different from fish reared at the same elevated thermal conditions in successive generations.


Asunto(s)
Aclimatación/genética , Calentamiento Global , Perciformes/genética , Temperatura , Animales , Arrecifes de Coral , Expresión Génica , Perciformes/fisiología , Fenotipo
12.
J Neuroinflammation ; 14(1): 49, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28279172

RESUMEN

BACKGROUND: Astrocyte activation is one of the earliest findings in the brain of methamphetamine (Meth) abusers. Our goal in this study was to identify the characteristics of the astrocytic acute response to the drug, which may be critical in pathogenic outcomes secondary to the use. METHODS: We developed an integrated analysis of gene expression data to study the acute gene changes caused by the direct exposure to Meth treatment of astrocytes in vitro, and to better understand how astrocytes respond, what are the early molecular markers associated with this response. We examined the literature in search of similar changes in gene signatures that are found in central nervous system disorders. RESULTS: We identified overexpressed gene networks represented by genes of an inflammatory and immune nature and that are implicated in neuroactive ligand-receptor interactions. The overexpressed networks are linked to molecules that were highly upregulated in astrocytes by all doses of methamphetamine tested and that could play a role in the central nervous system. The strongest overexpressed signatures were the upregulation of MAP2K5, GPR65, and CXCL5, and the gene networks individually associated with these molecules. Pathway analysis revealed that these networks are involved both in neuroprotection and in neuropathology. We have validated several targets associated to these genes. CONCLUSIONS: Gene signatures for the astrocytic response to Meth were identified among the upregulated gene pool, using an in vitro system. The identified markers may participate in dysfunctions of the central nervous system but could also provide acute protection to the drug exposure. Further in vivo studies are necessary to establish the role of these gene networks in drug abuse pathogenesis.


Asunto(s)
Astrocitos/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Metanfetamina/farmacología , Animales , Astrocitos/fisiología , Células Cultivadas , Expresión Génica/fisiología , Redes Reguladoras de Genes/fisiología , Ratas , Ratas Sprague-Dawley
13.
Nanotechnology ; 28(5): 055703, 2017 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-28029098

RESUMEN

Stem cells have been shown to respond to extracellular mechanical stimuli by regulating their fate through the activation of specific signaling pathways. In this work, an array of iron nanowires (NWs) aligned perpendicularly to the surface was fabricated by pulsed electrodepositon in porous alumina templates followed by a partial removal of the alumina to reveal 2-3 µm of the NWs. This resulted in alumina substrates with densely arranged NWs of 33 nm in diameter separated by 100 nm. The substrates were characterized by scanning electron microscopy (SEM) energy dispersive x-ray analysis and vibrating sample magnetometer. The NW array was then used as a platform for the culture of human mesenchymal stem cells (hMSCs). The cells were stained for the cell nucleus and actin filaments, as well as immuno-stained for the focal adhesion protein vinculin, and then observed by fluorescence microscopy in order to characterize their spreading behavior. Calcein AM/ethidium homodimer-1 staining allowed the determination of cell viability. The interface between the cells and the NWs was studied using SEM. Results showed that hMSCs underwent a re-organization of actin filaments that translated into a change from an elongated to a spherical cell shape. Actin filaments and vinculin accumulated in bundles, suggesting the attachment and formation of focal adhesion points of the cells on the NWs. Though the overall number of cells attached on the NWs was lower compared to the control, the attached cells maintained a high viability (>90%) for up to 6 d. Analysis of the interface between the NWs and the cells confirmed the re-organization of F-actin and revealed the adhesion points of the cells on the NWs. Additionally, a net of filopodia surrounded each cell, suggesting the probing of the array to find additional adhesion points. The cells maintained their round shape for up to 6 d of culture. Overall, the NW array is a promising nanostructured platform for studying and influencing hMSCs differentiation.

14.
BMC Genomics ; 17: 158, 2016 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-26926518

RESUMEN

BACKGROUND: Sponges (Porifera) harbor distinct microbial consortia within their mesohyl interior. We herein analysed the hologenomes of Stylissa carteri and Xestospongia testudinaria, which notably differ in their microbiome content. RESULTS: Our analysis revealed that S. carteri has an expanded repertoire of immunological domains, specifically Scavenger Receptor Cysteine-Rich (SRCR)-like domains, compared to X. testudinaria. On the microbial side, metatranscriptome analyses revealed an overrepresentation of potential symbiosis-related domains in X. testudinaria. CONCLUSIONS: Our findings provide genomic insights into the molecular mechanisms underlying host-symbiont coevolution and may serve as a roadmap for future hologenome analyses.


Asunto(s)
Microbiota/genética , Poríferos/genética , Poríferos/microbiología , Animales , Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Genéticos , Anotación de Secuencia Molecular , Receptores Depuradores/genética , Análisis de Secuencia de ADN , Simbiosis , Transcriptoma
15.
BMC Immunol ; 17(1): 7, 2016 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-27107567

RESUMEN

BACKGROUND: Methamphetamine (Meth) abuse is a major health problem linked to the aggravation of HIV- associated complications, especially within the Central Nervous System (CNS). Within the CNS, Meth has the ability to modify the activity/function of innate immune cells and increase brain viral loads. Here, we examined changes in the gene expression profile of neuron-free microglial cell preparations isolated from the brain of macaques infected with the Simian Immunodeficiency Virus (SIV), a model of neuroAIDS, and exposed to Meth. We aimed to identify molecular patterns triggered by Meth that could explain the detection of higher brain viral loads and the development of a pro-inflammatory CNS environment in the brain of infected drug abusers. RESULTS: We found that Meth alone has a strong effect on the transcription of genes associated with immune pathways, particularly inflammation and chemotaxis. Systems analysis led to a strong correlation between Meth exposure and enhancement of molecules associated with chemokines and chemokine receptors, especially CXCR4 and CCR5, which function as co-receptors for viral entry. The increase in CCR5 expression was confirmed in the brain in correlation with increased brain viral load. CONCLUSIONS: Meth enhances the availability of CCR5-expressing cells for SIV in the brain, in correlation with increased viral load. This suggests that Meth is an important factor in the susceptibility to the infection and to the aggravated CNS inflammatory pathology associated with SIV in macaques and HIV in humans.


Asunto(s)
Encéfalo/inmunología , Inflamación/inmunología , Metanfetamina/administración & dosificación , Microglía/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/fisiología , Trastornos Relacionados con Sustancias/inmunología , Animales , Encéfalo/virología , Células Cultivadas , Quimiotaxis , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Infecciones por VIH/inmunología , VIH-1/fisiología , Humanos , Macaca , Microglía/virología , Receptores CCR5/genética , Receptores CCR5/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Trastornos Relacionados con Sustancias/virología , Carga Viral
16.
Glob Chang Biol ; 22(6): 2054-68, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26990129

RESUMEN

The metamorphosis of planktonic larvae of the Pacific oyster (Crassostrea gigas) underpins their complex life-history strategy by switching on the molecular machinery required for sessile life and building calcite shells. Metamorphosis becomes a survival bottleneck, which will be pressured by different anthropogenically induced climate change-related variables. Therefore, it is important to understand how metamorphosing larvae interact with emerging climate change stressors. To predict how larvae might be affected in a future ocean, we examined changes in the proteome of metamorphosing larvae under multiple stressors: decreased pH (pH 7.4), increased temperature (30 °C), and reduced salinity (15 psu). Quantitative protein expression profiling using iTRAQ-LC-MS/MS identified more than 1300 proteins. Decreased pH had a negative effect on metamorphosis by down-regulating several proteins involved in energy production, metabolism, and protein synthesis. However, warming switched on these down-regulated pathways at pH 7.4. Under multiple stressors, cell signaling, energy production, growth, and developmental pathways were up-regulated, although metamorphosis was still reduced. Despite the lack of lethal effects, significant physiological responses to both individual and interacting climate change related stressors were observed at proteome level. The metamorphosing larvae of the C. gigas population in the Yellow Sea appear to have adequate phenotypic plasticity at the proteome level to survive in future coastal oceans, but with developmental and physiological costs.


Asunto(s)
Adaptación Fisiológica , Cambio Climático , Crassostrea/fisiología , Metamorfosis Biológica , Proteoma/fisiología , Animales , Cromatografía Liquida , Concentración de Iones de Hidrógeno , Larva/fisiología , Salinidad , Agua de Mar/química , Estrés Fisiológico , Espectrometría de Masas en Tándem , Temperatura
17.
Cell Microbiol ; 17(5): 730-46, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25410299

RESUMEN

Urinary tract infections (UTI) are among the most common infections in humans. Uropathogenic Escherichia coli (UPEC) can invade and replicate within bladder epithelial cells, and some UPEC strains can also survive within macrophages. To understand the UPEC transcriptional programme associated with intramacrophage survival, we performed host-pathogen co-transcriptome analyses using RNA sequencing. Mouse bone marrow-derived macrophages (BMMs) were challenged over a 24 h time course with two UPEC reference strains that possess contrasting intramacrophage phenotypes: UTI89, which survives in BMMs, and 83972, which is killed by BMMs. Neither of these strains caused significant BMM cell death at the low multiplicity of infection that was used in this study. We developed an effective computational framework that simultaneously separated, annotated and quantified the mammalian and bacterial transcriptomes. Bone marrow-derived macrophages responded to the two UPEC strains with a broadly similar gene expression programme. In contrast, the transcriptional responses of the UPEC strains diverged markedly from each other. We identified UTI89 genes up-regulated at 24 h post-infection, and hypothesized that some may contribute to intramacrophage survival. Indeed, we showed that deletion of one such gene (pspA) significantly reduced UTI89 survival within BMMs. Our study provides a technological framework for simultaneously capturing global changes at the transcriptional level in co-cultures, and has generated new insights into the mechanisms that UPEC use to persist within the intramacrophage environment.


Asunto(s)
Escherichia coli/inmunología , Escherichia coli/fisiología , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Macrófagos/inmunología , Macrófagos/microbiología , Animales , Células Cultivadas , Ratones , Análisis de Secuencia de ARN
18.
J Nanobiotechnology ; 14: 4, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26768888

RESUMEN

BACKGROUND: Nanostructures fabricated by different methods have become increasingly important for various applications in biology and medicine, such as agents for medical imaging or cancer therapy. In order to understand their interaction with living cells and their internalization kinetics, several attempts have been made in tagging them. Although methods have been developed to measure the number of nanostructures internalized by the cells, there are only few approaches aimed to measure the number of cells that internalize the nanostructures, and they are usually limited to fixed-cell studies. Flow cytometry can be used for live-cell assays on large populations of cells, however it is a single time point measurement, and does not include any information about cell morphology. To date many of the observations made on internalization events are limited to few time points and cells. RESULTS: In this study, we present a method for quantifying cells with internalized magnetic nanowires (NWs). A machine learning-based computational framework, CellCognition, is adapted and used to classify cells with internalized and no internalized NWs, labeled with the fluorogenic pH-dependent dye pHrodo™ Red, and subsequently to determine the percentage of cells with internalized NWs at different time points. In a "proof-of-concept", we performed a study on human colon carcinoma HCT 116 cells and human epithelial cervical cancer HeLa cells interacting with iron (Fe) and nickel (Ni) NWs. CONCLUSIONS: This study reports a novel method for the quantification of cells that internalize a specific type of nanostructures. This approach is suitable for high-throughput and real-time data analysis and has the potential to be used to study the interaction of different types of nanostructures in live-cell assays.


Asunto(s)
Bioensayo/métodos , Nanoestructuras/química , Línea Celular Tumoral , Neoplasias del Colon/química , Femenino , Células HCT116 , Células HeLa , Humanos , Hierro/química , Magnetismo/métodos , Nanocables/química , Níquel/química , Tamaño de la Partícula , Neoplasias del Cuello Uterino/química
19.
Proteomics ; 15(21): 3731-43, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26307563

RESUMEN

The differentiation of macrophages from monocytes is a tightly controlled and complex biological process. Although numerous studies have been conducted using biochemical approaches or global gene/protein profiling, the mechanisms of the early stages of differentiation remain unclear. Here we used SILAC-based quantitative proteomics approach to perform temporal phosphoproteome profiling of early macrophage differentiation. We identified a large set of phosphoproteins and grouped them as PMA-regulated and non-regulated phosphoproteins in the early stages of differentiation. Further analysis of the PMA-regulated phosphoproteins revealed that transcriptional suppression, cytoskeletal reorganization and cell adhesion were among the most significantly activated pathways. Some key involved regulators of these pathways are mTOR, MYB, STAT1 and CTNNB. Moreover, we were able to classify the roles and activities of several transcriptional factors during different differentiation stages and found that E2F is likely to be an important regulator during the relatively late stages of differentiation. This study provides the first comprehensive picture of the dynamic phosphoproteome during myeloid cells differentiation, and identifies potential molecular targets in leukemic cells.


Asunto(s)
Diferenciación Celular , Macrófagos/citología , Fosfoproteínas/análisis , Secuencia de Aminoácidos , Línea Celular Tumoral , Humanos , Macrófagos/metabolismo , Datos de Secuencia Molecular , Fosfoproteínas/metabolismo , Fosforilación , Mapas de Interacción de Proteínas , Proteómica/métodos , Transducción de Señal
20.
BMC Genomics ; 16: 1063, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26666348

RESUMEN

BACKGROUND: The barnacle Balanus amphitrite is widely distributed in marine shallow and tidal waters, and has significant economic and ecological importance. Nauplii, the first larval stage of most crustaceans, are extremely abundant in the marine zooplankton. However, a lack of genome information has hindered elucidation of the molecular mechanisms of development, settlement and survival strategies in extreme marine environments. We sequenced and constructed the genome dataset for nauplii to obtain comprehensive larval genetic information. We also investigated iTRAQ-based protein expression patterns to reveal the molecular basis of nauplii development, and to gain information on larval survival strategies in the Red Sea marine environment. RESULTS: A nauplii larval transcript dataset, containing 92,117 predicted open reading frames (ORFs), was constructed and used as a reference for the proteome analysis. Genes related to translation, oxidative phosphorylation and cytoskeletal development were highly abundant. We observed remarkable plasticity in the proteome of Red Sea larvae. The proteins associated with development, stress responses and osmoregulation showed the most significant differences between the two larval populations studied. The synergistic overexpression of heat shock and osmoregulatory proteins may facilitate larval survival in intertidal habitats or in extreme environments. CONCLUSIONS: We presented, for the first time, comprehensive transcriptome and proteome datasets for Red Sea nauplii. The datasets provide a foundation for future investigations focused on the survival mechanisms of other crustaceans in extreme marine environments.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Proteómica/métodos , Thoracica/genética , Thoracica/metabolismo , Animales , Bases de Datos Genéticas , Regulación del Desarrollo de la Expresión Génica , Océano Índico , Larva/genética , Larva/metabolismo , Sistemas de Lectura Abierta , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA